Neuromuscular control in individuals with chronic ankle instability: A comparison of unexpected and expected ankle inversion perturbations during a single leg drop-landing

2019 ◽  
Vol 64 ◽  
pp. 133-141 ◽  
Author(s):  
Jeffrey D. Simpson ◽  
Ethan M. Stewart ◽  
Alana J. Turner ◽  
David M. Macias ◽  
Samuel J. Wilson ◽  
...  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Patrick Fuerst ◽  
Albert Gollhofer ◽  
Markus Wenning ◽  
Dominic Gehring

Abstract Background The application of ankle braces is an effective method for the prevention of recurrent ankle sprains. It has been proposed that the reduction of injury rates is based on the mechanical stiffness of the brace and on beneficial effects on proprioception and neuromuscular activation. Yet, how the neuromuscular system responds to the application of various types of ankle braces during highly dynamic injury-relevant movements is not well understood. Enhanced stability of the ankle joint seems especially important for people with chronic ankle instability. We therefore aimed to analyse the effects of a soft and a semi-rigid ankle brace on the execution of highly dynamic 180° turning movements in participants with and without chronic ankle instability. Methods Fifteen participants with functional ankle instability, 15 participants with functional and mechanical ankle instability and 15 healthy controls performed 180° turning movements in reaction to light signals in a cross-sectional descriptive laboratory study. Ankle joint kinematics and kinetics as well as neuromuscular activation of muscles surrounding the ankle joint were determined. Two-way repeated measures analyses of variance and post-hoc t-tests were calculated. Results Maximum ankle inversion angles and velocities were significantly reduced with the semi-rigid brace in comparison to the conditions without a brace and with the soft brace (p ≤ 0.006, d ≥ 0.303). Effect sizes of these reductions were larger in participants with chronic ankle instability than in healthy controls. Furthermore, peroneal activation levels decreased significantly with the semi-rigid brace in the 100 ms before and after ground contact. No statistically significant brace by group effects were found. Conclusions Based on these findings, we argue that people with ankle instability in particular seem to benefit from a semi-rigid ankle brace, which allows them to keep ankle inversion angles in a range that is comparable to values of healthy people. Lower ankle inversion angles and velocities with a semi-rigid brace may explain reduced injury incidences with brace application. The lack of effect of the soft brace indicates that the primary mechanism behind the reduction of inversion angles and velocities is the mechanical resistance of the brace in the frontal plane.


2009 ◽  
Vol 18 (3) ◽  
pp. 375-388 ◽  
Author(s):  
Lindsay K. Drewes ◽  
Patrick O. McKeon ◽  
Gabriele Paolini ◽  
Patrick Riley ◽  
D. Casey Kerrigan ◽  
...  

Context:Kinematic patterns during gait have not been extensively studied in relation to chronic ankle instability (CAI).Objective:To determine whether individuals with CAI demonstrate altered ankle kinematics and shank-rear-foot coupling compared with controls during walking and jogging.Design:Case control.Setting:Motion-analysis laboratory.Participants:7 participants (3 men, 4 women) suffering from CAI (age 24.6 ± 4.2 y, height 172.6 ± 9.4 cm, mass 70.9 ± 8.1 kg) and 7 (3 men, 4 women) healthy, matched controls (age 24.7 ± 4.5 y, height 168.2 ± 5.9 cm, mass 66.5 ± 9.8 kg).Interventions:Subjects walked and jogged on a treadmill while 3-dimensional kinematics of the lower extremities were captured.Main Outcome Measures:The positions of rear-foot inversion–eversion and shank rotation were calculated throughout the gait cycle. Continuous relative-phase angles between these segments were calculated to assess coupling.Results:The CAI group demonstrated more rear-foot inversion and shank external rotation during walking and jogging. There were differences between groups in shank-rear-foot coupling during terminal swing at both speeds.Conclusions:Altered ankle kinematics and joint coupling during the terminal-swing phase of gait may predispose a population with CAI to ankle-inversion injuries. Less coordinated movement during gait may be an indication of altered neuromuscular recruitment of the musculature surrounding the ankle as the foot is being positioned for initial contact.


2014 ◽  
Vol 49 (5) ◽  
pp. 599-607 ◽  
Author(s):  
Masafumi Terada ◽  
Brian G. Pietrosimone ◽  
Phillip A. Gribble

Context: Few authors have assessed neuromuscular knee-stabilization strategies in individuals with chronic ankle instability (CAI) during functional activities. Objective: To investigate the influence of CAI on neuromuscular characteristics around the knee during a stop-jump task. Design: Case-control study. Setting: Research laboratory. Participants or Other Participants: A total of 19 participants with self-reported unilateral CAI and 19 healthy control participants volunteered for this study. Intervention(s): Participants performed double-legged, vertical stop-jump tasks onto a force plate, and we measured muscle activation around the knee of each limb. Main Outcome Measure(s): We calculated the integrated electromyography for the vastus medialis oblique, vastus lateralis, medial hamstrings, and lateral hamstrings muscles during the 100 ms before and after initial foot contacts with the force plate and normalized by the ensemble peak electromyographic value. Knee sagittal-plane kinematics were also analyzed during a stop-jump task. Results: Compared with control participants, the CAI group demonstrated greater prelanding integrated electromyographic activity of the vastus medialis oblique (CAI = 52.28 ± 11.25%·ms, control = 43.90 ± 10.13%·ms, t36 = 2.41, P = .021, effect size = 0.78, 95% confidence interval = 0.11, 1.43) and less knee-flexion angle at the point of initial foot contact (CAI = 7.81° ± 8.27°, control = 14.09° ± 8.7°, t36 = −2.28, P = .029, effect size = −0.74, 95% confidence interval = −1.38, −0.07) and at 100 ms post–initial foot contact (CAI = 51.36° ± 5.29°, control = 58.66° ± 7.66°, t36 = −3.42, P = .002, effect size = −1.11, 95% confidence interval = −1.77, −0.40). No significant results were noted for the other electromyographic measures. Conclusions: We found altered feed-forward patterns of the vastus medialis oblique and altered postlanding knee sagittal-plane kinematics in the CAI group. These observations may provide insight regarding sensorimotor characteristics that may be associated with CAI.


2020 ◽  
Vol 25 (4) ◽  
pp. 165-169
Author(s):  
Kimmery Migel ◽  
Erik Wikstrom

Introduction/Clinical Scenario: Ankle sprains are highly common within the population and can lead to chronic ankle instability (CAI). Individuals with CAI have both functional and mechanical impairments, which are thought to contribute to maladaptive gait biomechanics. Neuromuscular control and balance training are frequently incorporated into rehabilitation programs, however the effect of balance training on gait biomechanics remains unknown. Focused Clinical Question: Does balance or neuromuscular training improve gait biomechanics in individuals with CAI? Summary of Key Findings: Three studies assessed 4–6 weeks of progressive neuromuscular control training and found no improvements in gait biomechanics. One study found a worsening of eversion position at midstance upon program completion. However, when training was augmented with destabilizing shoes, improvements in dorsiflexion were noted. Clinical Bottom Line: Cumulative findings suggest that neuromuscular control training does not improve gait biomechanics in those with CAI. However, augmentation of programs may be beneficial. Strength of Recommendation: There is high-quality evidence(Grade B) that balance training does not alter gait biomechanics in patients with CAI.


Sign in / Sign up

Export Citation Format

Share Document