Side-to-side anterior tibial translation on monopodal weightbearing radiographs as a sign of knee decompensation in ACL-deficient knees

Author(s):  
Luca Macchiarola ◽  
Christophe Jacquet ◽  
Jeremie Dor ◽  
Stefano Zaffagnini ◽  
Caroline Mouton ◽  
...  
2018 ◽  
Vol 46 (10) ◽  
pp. 2422-2431 ◽  
Author(s):  
Nicholas N. DePhillipo ◽  
Gilbert Moatshe ◽  
Alex Brady ◽  
Jorge Chahla ◽  
Zachary S. Aman ◽  
...  

Background: Ramp lesions were initially defined as a tear of the peripheral attachment of the posterior horn of the medial meniscus at the meniscocapsular junction. The separate biomechanical roles of the meniscocapsular and meniscotibial attachments of the posterior medial meniscus have not been fully delineated. Purpose: To evaluate the biomechanical effects of meniscocapsular and meniscotibial lesions of the posterior medial meniscus in anterior cruciate ligament (ACL)–deficient and ACL-reconstructed knees and the effect of repair of ramp lesions. Study Design: Controlled laboratory study. Methods: Twelve matched pairs of human cadaveric knees were evaluated with a 6 degrees of freedom robotic system. All knees were subjected to an 88-N anterior tibial load, internal and external rotation torques of 5 N·m, and a simulated pivot-shift test of 10-N valgus force coupled with 5-N·m internal rotation. The paired knees were randomized to the cutting of either the meniscocapsular or the meniscotibial attachments after ACL reconstruction (ACLR). Eight comparisons of interest were chosen before data analysis was conducted. Data from the intact state were compared with data from the subsequent states. The following states were tested: intact (n = 24), ACL deficient (n = 24), ACL deficient with a meniscocapsular lesion (n = 12), ACL deficient with a meniscotibial lesion (n = 12), ACL deficient with both meniscocapsular and meniscotibial lesions (n = 24), ACLR with both meniscocapsular and meniscotibial lesions (n = 16), and ACLR with repair of both meniscocapsular and meniscotibial lesions (n = 16). All states were compared with the previous states. For the repair and reconstruction states, only the specimens that underwent repair were compared with their intact and sectioned states, thus excluding the specimens that did not undergo repair. Results: Cutting the meniscocapsular and meniscotibial attachments of the posterior horn of the medial meniscus significantly increased anterior tibial translation in ACL-deficient knees at 30° ( P ≤ .020) and 90° ( P < .005). Cutting both the meniscocapsular and meniscotibial attachments increased tibial internal (all P > .004) and external (all P < .001) rotation at all flexion angles in ACL-reconstructed knees. Reconstruction of the ACL in the presence of meniscocapsular and meniscotibial tears restored anterior tibial translation ( P > .053) but did not restore internal rotation ( P < .002), external rotation ( P < .002), and the pivot shift ( P < .05). To restore the pivot shift, an ACLR and a concurrent repair of the meniscocapsular and meniscotibial lesions were both necessary. Repairing the meniscocapsular and meniscotibial lesions after ACLR did not restore internal rotation and external rotation at angles >30°. Conclusion: Meniscocapsular and meniscotibial lesions of the posterior horn of the medial meniscus increased knee anterior tibial translation, internal and external rotation, and the pivot shift in ACL-deficient knees. The pivot shift was not restored with an isolated ACLR but was restored when performed concomitantly with a meniscocapsular and meniscotibial repair. However, the effect of this change was minimal; although statistical significance was found, the overall clinical significance remains unclear. The ramp lesion repair used in this study failed to restore internal rotation and external rotation at higher knee flexion angles. Further studies should examine improved meniscus repair techniques for root tears combined with ACLRs. Clinical Relevance: Meniscal ramp lesions should be repaired at the time of ACLR to avoid continued knee instability (anterior tibial translation) and to eliminate the pivot-shift phenomenon.


2019 ◽  
Vol 7 (6_suppl4) ◽  
pp. 2325967119S0021
Author(s):  
Florian B. Imhoff ◽  
Julian Mehl ◽  
Elifho Obopilwe ◽  
Andreas Imhoff ◽  
Knut Beitzel

Aims and Objectives: To perform an anterior closing wedge osteotomy by 10° for slope reduction and investigate the effect of axial load and anterior drawer on forces on ACL graft, strain and femoro-tibial kinematics in a native, ACL-deficient and reconstructed knee. Materials and Methods: Ten cadaveric knees with an increased native slope were selected for this study based on CT meas-urements. An anterior closing-wedge osteotomy was performed by 10° and fixed with an external fixator. Tibial axial load (200 N, 400 N) was applied, while the tibial side was mounted on a free mov-ing X-Y-table with open rotation in 30° of knee flexion. Additionally, an anterior drawer (134 N) was performed with and without axial load (200 N). Specimens underwent native testing, cut ACL, and reconstructed ACL with a standardized quadruple semi-t/gracilis-allograft. Each condition was ran-domly tested with native slope and reduced slope. Change of forces on ACL-graft (attached load-cell) and strain on native ACL (via DVRT) were recorded. Throughout testing, 3D motion tracking captured anterior tibial translation (ATT) and rotation versus the fixed femur. Results: Preoperative, specimens showed an averaged lateral and medial slope of (average ±SD) 10° ± 1.4°, and age 48.2 ± 5.8years. Slope reduction significantly decreased forces on ACL graft by 17% (p=0.001) at 200 N and by 33% (p=0.0001) at 400 N of axial load. Furthermore, ATT was significantly decreased after slope reduc-tion in native (p=0.01), cut (p=0.005), and ACL-graft (p=0.01) status. Strain in native ACL de-creased by 9.7 ± 0.13% (p<0.0001) after slope reduction without any load. However, anterior drawer without axial load maintained significantly higher anterior tibial translation (native-pre 4.12 ± 0.65 mm vs. native-post 5.82 ± 1.51 mm, cut-ACL-pre 9.35 ± 1.57 mm vs cut-ACL-post 12.0 ± 3.53 mm, ACL-recon-pre 4.60 ± 0.97 mm vs. ACL-recon-post 5.73 ± 1.45 mm) and significantly higher forces on ACL graft (p=0.0006) after osteotomy. When axial load was combined with anterior drawer no significant change on ATT after osteotomy was observed. Rotational analysis did show a significant effect in the ACL cut condition due to slope correction. Overall, native and reconstruct-ed ACL showed the same tibial kinematics throughout testing. Conclusion: In general, osteotomy lowered ACL graft force and ACL strain when the joint was axially loaded. Anterior tibial translation was reduced even in an ACL deficient knee. When anterior drawer was performed without axial load, ATT was higher after slope reduction in every condition.


2019 ◽  
Vol 28 (6) ◽  
pp. 1901-1908 ◽  
Author(s):  
Antoine Schneider ◽  
Claudia Arias ◽  
Chris Bankhead ◽  
Romain Gaillard ◽  
Sebastien Lustig ◽  
...  

2018 ◽  
Vol 46 (6) ◽  
pp. 1352-1361 ◽  
Author(s):  
Andrew G. Geeslin ◽  
Jorge Chahla ◽  
Gilbert Moatshe ◽  
Kyle J. Muckenhirn ◽  
Bradley M. Kruckeberg ◽  
...  

Background: The individual kinematic roles of the anterolateral ligament (ALL) and the distal iliotibial band Kaplan fibers in the setting of anterior cruciate ligament (ACL) deficiency require further clarification. This will improve understanding of their potential contribution to residual anterolateral rotational laxity after ACL reconstruction and may influence selection of an anterolateral extra-articular reconstruction technique, which is currently a matter of debate. Hypothesis/Purpose: To compare the role of the ALL and the Kaplan fibers in stabilizing the knee against tibial internal rotation, anterior tibial translation, and the pivot shift in ACL-deficient knees. We hypothesized that the Kaplan fibers would provide greater tibial internal rotation restraint than the ALL in ACL-deficient knees and that both structures would provide restraint against internal rotation during a simulated pivot-shift test. Study Design: Controlled laboratory study. Methods: Ten paired fresh-frozen cadaveric knees (n = 20) were used to investigate the effect of sectioning the ALL and the Kaplan fibers in ACL-deficient knees with a 6 degrees of freedom robotic testing system. After ACL sectioning, sectioning was randomly performed for the ALL and the Kaplan fibers. An established robotic testing protocol was utilized to assess knee kinematics when the specimens were subjected to a 5-N·m internal rotation torque (0°-90° at 15° increments), a simulated pivot shift with 10-N·m valgus and 5-N·m internal rotation torque (15° and 30°), and an 88-N anterior tibial load (30° and 90°). Results: Sectioning of the ACL led to significantly increased tibial internal rotation (from 0° to 90°) and anterior tibial translation (30° and 90°) as compared with the intact state. Significantly increased internal rotation occurred with further sectioning of the ALL (15°-90°) and Kaplan fibers (15°, 60°-90°). At higher flexion angles (60°-90°), sectioning the Kaplan fibers led to significantly greater internal rotation when compared with ALL sectioning. On simulated pivot-shift testing, ALL sectioning led to significantly increased internal rotation and anterior translation at 15° and 30°; sectioning of the Kaplan fibers led to significantly increased tibial internal rotation at 15° and 30° and anterior translation at 15°. No significant difference was found when anterior tibial translation was compared between the ACL/ALL- and ACL/Kaplan fiber–deficient states on simulated pivot-shift testing or isolated anterior tibial load. Conclusion: The ALL and Kaplan fibers restrain internal rotation in the ACL-deficient knee. Sectioning the Kaplan fibers led to greater tibial internal rotation at higher flexion angles (60°-90°) as compared with ALL sectioning. Additionally, the ALL and Kaplan fibers contribute to restraint of the pivot shift and anterior tibial translation in the ACL-deficient knee. Clinical Relevance: This study reports that the ALL and distal iliotibial band Kaplan fibers restrain anterior tibial translation, internal rotation, and pivot shift in the ACL-deficient knee. Furthermore, sectioning the Kaplan fibers led to significantly greater tibial internal rotation when compared with ALL sectioning at high flexion angles. These results demonstrate increased rotational knee laxity with combined ACL and anterolateral extra-articular knee injuries and may allow surgeons to optimize the care of patients with this injury pattern.


2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Jin Kyu Lee ◽  
Young Jin Seo ◽  
Soo-Young Jeong ◽  
Jae-Hyuk Yang

Abstract Background It has been suggested that the anterolateral ligament (ALL) is an important anterolateral stabilizer of the knee joint which functions to prevent anterolateral subluxation and anterior subluxation at certain flexion angles in the knee. Purpose To analyze and systematically interpret the biomechanical function of the ALL. Methods An online search was conducted for human cadaveric biomechanical studies that tested function of the ALL in resisting anterolateral subluxation and anterior subluxation of the knee. Two reviewers independently searched Medline, Embase, and the Cochrane Database of Systematic Reviews for studies up to 25 September 2018. Biomechanical studies not reporting the magnitude of anterior tibial translation or tibial internal rotation in relation to the function of the ALL were excluded. Results Twelve biomechanical studies using human cadavers evaluating parameters including anterior tibial translation and/or internal tibial rotation in anterior cruciate ligament (ACL)-sectioned and ALL-sectioned knees were included in the review. Five studies reported a minor increase or no significant increase in anterior tibial translation and internal tibial rotation with further sectioning of the ALL in ACL-deficient knees. Five studies reported a significant increase in knee laxity in tibial internal rotation or pivot shift with addition of sectioning the ALL in ACL-deficient knees. Two studies reported a significant increase in both anterior tibial translation and internal tibial rotation during application of the anterior-drawer and pivot-shift tests after ALL sectioning. Conclusion There was inconsistency in the biomechanical characteristics of the ALL of the knee in resisting anterolateral and anterior subluxation of the tibia.


2018 ◽  
Vol 04 (03) ◽  
pp. e160-e163 ◽  
Author(s):  
Steffen Sauer ◽  
Mark Clatworthy

Background Increased tibial slope has been shown to be associated with higher anterior cruciate ligament (ACL) reconstruction failure rate. Little is known about the correlation of tibial slope and anterior tibial translation in ACL deficient and reconstructed knees as well as the correlation of tibial slope and ACL reconstruction outcome. Purpose/Hypothesis The purpose of this study was to investigate the correlation of tibial slope with anterior tibial translation and ACL reconstruction outcome. It is hypothesized that increased medial tibial slope is associated with increased anterior tibial translation in the ACL deficient knee. Medial tibial slope is neither expected to affect anterior tibial translation in the ACL reconstructed knee nor short-term ACL reconstruction outcome. Materials and Methods A cohort of 104 patients with unilateral isolated ACL deficiency undergoing hamstring ACL reconstruction by a single surgeon between 2002 and 2004 was followed up prospectively. Preoperative data were collected including patient demographics, time to surgery, subjective and objective International Knee Documentation Committee (IKDC) outcome scores, as well as manual maximum anterior tibial translation measured with the KT-1000 measuring instrument. Medial tibial slope was assessed on long lateral X-rays using the method described by Dejour and Bonnin (1994). Intraoperative data were collected including meniscal integrity; postoperative data were collected at 1-year follow-up including manual maximum anterior tibial translation (KT-1000 measured), and subjective and objective IKDC scores. Results A significant positive correlation was seen between medial tibial slope in ACL deficient knees and KT-1000–measured anterior tibial translation (r = 0.24; p = 0.003). The positive relationship increased when meniscal integrity was factored in (r = 0.33; p < 0.001). No significant correlation was seen between medial or lateral meniscal integrity and KT-1000–measured anterior tibial translation (r = −18; p = 0.06). No significant correlation was seen between KT-1000–measured anterior tibial translation and time to surgery. One year postoperatively, 82 patients were assessed, while 26 patients were lost to follow-up; no significant correlation was found between increased medial tibial slope and poor ACL reconstruction outcome measured by post-ACL reconstruction anterior tibial translation (KT-1000) or subjective and objective IKDC scores. Conclusion Increased medial tibial slope is associated with increased (KT-1000 measured) anterior tibial translation in ACL deficient knees. No significant correlation is found between increased medial tibial slope and poor short-term ACL reconstruction outcome.


2021 ◽  
Vol 9 (4) ◽  
pp. 232596712199806
Author(s):  
Michèle N.J. Keizer ◽  
Egbert Otten ◽  
Chantal M.I. Beijersbergen ◽  
Reinoud W. Brouwer ◽  
Juha M. Hijmans

Background: At 1 year after anterior cruciate ligament reconstruction (ACLR), two-thirds of patients manage to return to sports (copers), whereas one-third of patients do not return to sports (noncopers). Copers and noncopers have different muscle activation patterns, and noncopers may not be able to control dynamic anterior tibial translation (ATTd) as well as copers. Purpose/Hypothesis: To investigate whether (1) there is a positive correlation between passive ATT (ATTp; ie, general joint laxity) and ATTd during jump landing, (2) whether ATTd is moderated by muscle activating patterns, and (3) whether there is a difference in moderating ATTd between copers and noncopers. We hypothesized that patients who have undergone ACLR compensate for ATTd by developing muscle strategies that are more effective in copers compared with noncopers. Study Design: Controlled laboratory study. Methods: A total of 40 patients who underwent unilateral ACLR performed 10 single-leg hops for distance with both legs. Lower body kinematic and kinetic data were measured using a motion-capture system, and ATTd was determined with an embedded method. Muscle activity was measured using electromyographic signals. Bilateral ATTp was measured using a KT-1000 arthrometer. In addition, the Beighton score was obtained. Results: There was no significant correlation between ATTp and ATTd in copers; however, there was a positive correlation between ATTp and ATTd in the operated knee of noncopers. There was a positive correlation between the Beighton score and ATTp as well as between the Beighton score and ATTd in both copers and noncopers in the operated knee. Copers showed a negative correlation between ATTd and gastrocnemius activity in their operated leg during landing. Noncopers showed a positive correlation between ATTd and knee flexion moment in their operated knee during landing. Conclusion: Copers used increased gastrocnemius activity to reduce ATTd, whereas noncopers moderated ATTd by generating a smaller knee flexion moment. Clinical Relevance: This study showed that copers used different landing techniques than noncopers. Patients who returned to sports after ACLR had sufficient plantar flexor activation to limit ATTd.


Sign in / Sign up

Export Citation Format

Share Document