scholarly journals Biomechanical function of the anterolateral ligament of the knee: a systematic review

2020 ◽  
Vol 32 (1) ◽  
Author(s):  
Jin Kyu Lee ◽  
Young Jin Seo ◽  
Soo-Young Jeong ◽  
Jae-Hyuk Yang

Abstract Background It has been suggested that the anterolateral ligament (ALL) is an important anterolateral stabilizer of the knee joint which functions to prevent anterolateral subluxation and anterior subluxation at certain flexion angles in the knee. Purpose To analyze and systematically interpret the biomechanical function of the ALL. Methods An online search was conducted for human cadaveric biomechanical studies that tested function of the ALL in resisting anterolateral subluxation and anterior subluxation of the knee. Two reviewers independently searched Medline, Embase, and the Cochrane Database of Systematic Reviews for studies up to 25 September 2018. Biomechanical studies not reporting the magnitude of anterior tibial translation or tibial internal rotation in relation to the function of the ALL were excluded. Results Twelve biomechanical studies using human cadavers evaluating parameters including anterior tibial translation and/or internal tibial rotation in anterior cruciate ligament (ACL)-sectioned and ALL-sectioned knees were included in the review. Five studies reported a minor increase or no significant increase in anterior tibial translation and internal tibial rotation with further sectioning of the ALL in ACL-deficient knees. Five studies reported a significant increase in knee laxity in tibial internal rotation or pivot shift with addition of sectioning the ALL in ACL-deficient knees. Two studies reported a significant increase in both anterior tibial translation and internal tibial rotation during application of the anterior-drawer and pivot-shift tests after ALL sectioning. Conclusion There was inconsistency in the biomechanical characteristics of the ALL of the knee in resisting anterolateral and anterior subluxation of the tibia.

2018 ◽  
Vol 46 (6) ◽  
pp. 1352-1361 ◽  
Author(s):  
Andrew G. Geeslin ◽  
Jorge Chahla ◽  
Gilbert Moatshe ◽  
Kyle J. Muckenhirn ◽  
Bradley M. Kruckeberg ◽  
...  

Background: The individual kinematic roles of the anterolateral ligament (ALL) and the distal iliotibial band Kaplan fibers in the setting of anterior cruciate ligament (ACL) deficiency require further clarification. This will improve understanding of their potential contribution to residual anterolateral rotational laxity after ACL reconstruction and may influence selection of an anterolateral extra-articular reconstruction technique, which is currently a matter of debate. Hypothesis/Purpose: To compare the role of the ALL and the Kaplan fibers in stabilizing the knee against tibial internal rotation, anterior tibial translation, and the pivot shift in ACL-deficient knees. We hypothesized that the Kaplan fibers would provide greater tibial internal rotation restraint than the ALL in ACL-deficient knees and that both structures would provide restraint against internal rotation during a simulated pivot-shift test. Study Design: Controlled laboratory study. Methods: Ten paired fresh-frozen cadaveric knees (n = 20) were used to investigate the effect of sectioning the ALL and the Kaplan fibers in ACL-deficient knees with a 6 degrees of freedom robotic testing system. After ACL sectioning, sectioning was randomly performed for the ALL and the Kaplan fibers. An established robotic testing protocol was utilized to assess knee kinematics when the specimens were subjected to a 5-N·m internal rotation torque (0°-90° at 15° increments), a simulated pivot shift with 10-N·m valgus and 5-N·m internal rotation torque (15° and 30°), and an 88-N anterior tibial load (30° and 90°). Results: Sectioning of the ACL led to significantly increased tibial internal rotation (from 0° to 90°) and anterior tibial translation (30° and 90°) as compared with the intact state. Significantly increased internal rotation occurred with further sectioning of the ALL (15°-90°) and Kaplan fibers (15°, 60°-90°). At higher flexion angles (60°-90°), sectioning the Kaplan fibers led to significantly greater internal rotation when compared with ALL sectioning. On simulated pivot-shift testing, ALL sectioning led to significantly increased internal rotation and anterior translation at 15° and 30°; sectioning of the Kaplan fibers led to significantly increased tibial internal rotation at 15° and 30° and anterior translation at 15°. No significant difference was found when anterior tibial translation was compared between the ACL/ALL- and ACL/Kaplan fiber–deficient states on simulated pivot-shift testing or isolated anterior tibial load. Conclusion: The ALL and Kaplan fibers restrain internal rotation in the ACL-deficient knee. Sectioning the Kaplan fibers led to greater tibial internal rotation at higher flexion angles (60°-90°) as compared with ALL sectioning. Additionally, the ALL and Kaplan fibers contribute to restraint of the pivot shift and anterior tibial translation in the ACL-deficient knee. Clinical Relevance: This study reports that the ALL and distal iliotibial band Kaplan fibers restrain anterior tibial translation, internal rotation, and pivot shift in the ACL-deficient knee. Furthermore, sectioning the Kaplan fibers led to significantly greater tibial internal rotation when compared with ALL sectioning at high flexion angles. These results demonstrate increased rotational knee laxity with combined ACL and anterolateral extra-articular knee injuries and may allow surgeons to optimize the care of patients with this injury pattern.


2017 ◽  
Vol 46 (3) ◽  
pp. 607-616 ◽  
Author(s):  
Andrew G. Geeslin ◽  
Gilbert Moatshe ◽  
Jorge Chahla ◽  
Bradley M. Kruckeberg ◽  
Kyle J. Muckenhirn ◽  
...  

Background: Persistent clinical instability after anterior cruciate ligament (ACL) reconstruction may be associated with injury to the anterolateral structures and has led to renewed interest in anterolateral extra-articular procedures. The influence of these procedures on knee kinematics is controversial. Purpose/Hypothesis: The purpose was to investigate the biomechanical properties of anatomic anterolateral ligament (ALL) reconstruction and a modified Lemaire procedure (lateral extra-articular tenodesis [LET]) in combination with ACL reconstruction as compared with isolated ACL reconstruction in the setting of deficient anterolateral structures (ALL and Kaplan fibers). It was hypothesized that both techniques would reduce tibial internal rotation when combined with ACL reconstruction in the setting of anterolateral structure deficiency. Study Design: Controlled laboratory study. Methods: A 6 degrees of freedom robotic system was used to assess tibial internal rotation, a simulated pivot-shift test, and anterior tibial translation in 10 paired fresh-frozen cadaveric knees. The following states were tested: intact; sectioned ACL, ALL, and Kaplan fibers; ACL reconstruction; and an anterolateral extra-articular procedure (various configurations of ALL reconstruction and LET). Knees within a pair were randomly assigned to either ALL reconstruction or LET with a graft tension of 20 N and a randomly assigned fixation angle (30° or 70°). ALL reconstruction was then repeated and secured with a graft tension of 40 N. Results: In the setting of deficient anterolateral structures, ACL reconstruction was associated with significantly increased residual laxity for tibial internal rotation (up to 4°) and anterior translation (up to 2 mm) laxity as compared with the intact state. The addition of ALL reconstruction or LET after ACL reconstruction significantly reduced tibial internal rotation in most testing scenarios to values lower than the intact state (ie, overconstraint). Significantly greater reduction in laxity with internal rotation and pivot-shift testing was found with the LET procedure than ALL reconstruction when compared with the intact state. Combined with ACL reconstruction alone, both extra-articular procedures restored anterior tibial translation to values not significantly different from the intact state with most testing scenarios (usually within 1 mm). Conclusion: Residual laxity was identified after isolated ACL reconstruction in the setting of ALL and Kaplan fiber deficiency, and the combination of ACL reconstruction in this setting with either ALL reconstruction or the modified Lemaire LET procedure resulted in significant reductions in tibiofemoral motion at most knee flexion angles, although overconstraint was also identified. ALL reconstruction and LET restored anterior tibial translation to intact values with most testing states. Clinical Relevance: ALL reconstruction and lateral extra-articular tenodesis have been described in combination with intra-articular ACL reconstruction to address rotational laxity. This study demonstrated that both procedures resulted in significant reductions of tibial internal rotation versus the intact state independent of graft tension or fixation angle, although anterior tibial translation was generally restored to intact values. The influence of overconstraint with anterolateral knee reconstruction procedures has not been fully evaluated in the clinical setting and warrants continued evaluation based on the findings of this biomechanical study.


2018 ◽  
Vol 46 (10) ◽  
pp. 2422-2431 ◽  
Author(s):  
Nicholas N. DePhillipo ◽  
Gilbert Moatshe ◽  
Alex Brady ◽  
Jorge Chahla ◽  
Zachary S. Aman ◽  
...  

Background: Ramp lesions were initially defined as a tear of the peripheral attachment of the posterior horn of the medial meniscus at the meniscocapsular junction. The separate biomechanical roles of the meniscocapsular and meniscotibial attachments of the posterior medial meniscus have not been fully delineated. Purpose: To evaluate the biomechanical effects of meniscocapsular and meniscotibial lesions of the posterior medial meniscus in anterior cruciate ligament (ACL)–deficient and ACL-reconstructed knees and the effect of repair of ramp lesions. Study Design: Controlled laboratory study. Methods: Twelve matched pairs of human cadaveric knees were evaluated with a 6 degrees of freedom robotic system. All knees were subjected to an 88-N anterior tibial load, internal and external rotation torques of 5 N·m, and a simulated pivot-shift test of 10-N valgus force coupled with 5-N·m internal rotation. The paired knees were randomized to the cutting of either the meniscocapsular or the meniscotibial attachments after ACL reconstruction (ACLR). Eight comparisons of interest were chosen before data analysis was conducted. Data from the intact state were compared with data from the subsequent states. The following states were tested: intact (n = 24), ACL deficient (n = 24), ACL deficient with a meniscocapsular lesion (n = 12), ACL deficient with a meniscotibial lesion (n = 12), ACL deficient with both meniscocapsular and meniscotibial lesions (n = 24), ACLR with both meniscocapsular and meniscotibial lesions (n = 16), and ACLR with repair of both meniscocapsular and meniscotibial lesions (n = 16). All states were compared with the previous states. For the repair and reconstruction states, only the specimens that underwent repair were compared with their intact and sectioned states, thus excluding the specimens that did not undergo repair. Results: Cutting the meniscocapsular and meniscotibial attachments of the posterior horn of the medial meniscus significantly increased anterior tibial translation in ACL-deficient knees at 30° ( P ≤ .020) and 90° ( P < .005). Cutting both the meniscocapsular and meniscotibial attachments increased tibial internal (all P > .004) and external (all P < .001) rotation at all flexion angles in ACL-reconstructed knees. Reconstruction of the ACL in the presence of meniscocapsular and meniscotibial tears restored anterior tibial translation ( P > .053) but did not restore internal rotation ( P < .002), external rotation ( P < .002), and the pivot shift ( P < .05). To restore the pivot shift, an ACLR and a concurrent repair of the meniscocapsular and meniscotibial lesions were both necessary. Repairing the meniscocapsular and meniscotibial lesions after ACLR did not restore internal rotation and external rotation at angles >30°. Conclusion: Meniscocapsular and meniscotibial lesions of the posterior horn of the medial meniscus increased knee anterior tibial translation, internal and external rotation, and the pivot shift in ACL-deficient knees. The pivot shift was not restored with an isolated ACLR but was restored when performed concomitantly with a meniscocapsular and meniscotibial repair. However, the effect of this change was minimal; although statistical significance was found, the overall clinical significance remains unclear. The ramp lesion repair used in this study failed to restore internal rotation and external rotation at higher knee flexion angles. Further studies should examine improved meniscus repair techniques for root tears combined with ACLRs. Clinical Relevance: Meniscal ramp lesions should be repaired at the time of ACLR to avoid continued knee instability (anterior tibial translation) and to eliminate the pivot-shift phenomenon.


2018 ◽  
Vol 32 (10) ◽  
pp. 960-965
Author(s):  
Mohamed Omar ◽  
Yousif Al Saiegh ◽  
Emmanouil Liodakis ◽  
Timo Stuebig ◽  
Daniel Guenther ◽  
...  

AbstractWe aimed to investigate how increased or decreased femoral antetorsion would affect the biomechanics of the knee in an anterior cruciate ligament (ACL)-deficient cadaveric model. We hypothesized that external or internal rotation of the distal femur, achieved through a femoral osteotomy, would affect the magnitude of tibiofemoral translation and rotation. Navigated measurements of tibiofemoral translation and rotation during the anterior drawer, Lachman, and pivot shift tests were performed on six whole-body cadaveric specimens in each of the following four conditions: native, ACL-deficient knee, ACL-deficient knee and 20-degree internal distal femur rotation, and ACL-deficient knee and 20-degree external distal femur rotation. Increased femoral antetorsion significantly reduced anterior tibial translation in the ACL-deficient knee during the anterior drawer, Lachman, and pivot shift tests (p < 0.05). Conversely, decreasing femoral antetorsion resulted in an increase in anterior tibial translation in the anterior drawer (nonsignificant), Lachman (p < 0.05), and pivot shift (p < 0.05) tests. Internally rotating the distal femur significantly reduced the magnitude of tibial rotation during the pivot shift test in the ACL-deficient knee (p < 0.05), whereas external rotation of the distal femur significantly increased tibial rotation (p < 0.05). The magnitude of femoral antetorsion affects tibiofemoral translation in an ACL-deficient cadaveric mode. Internally rotating the distal femur 20 degrees reduced the magnitude of tibial translation and rotation similar to that of the native knee, whereas externally rotating the distal femur aggravated translational and rotational instability.


2019 ◽  
Vol 7 (5_suppl3) ◽  
pp. 2325967119S0020
Author(s):  
Thomas Neri ◽  
Antoine Lamotte ◽  
Tommaso Bonanzinga ◽  
Frederic Farizon ◽  
Remi Philippot

Objectives: The objective of this study was to compare the use of a laximeter and a triaxial accelerometer, for Anterolateral ligament injury diagnosis of in ACL deficient knee. We hypothesized that a triaxial accelerometer was more effective than a laximeter. Methods: A total of 11 cadaver knees were studied according to a new conservative dissection protocol without damage to the lateral structures. A GnRB® laximeter (Genourob, France) was used to determine anterior tibial translation (AP) of the tibia. Simultaneously, a KiRA® triaxial accelerometer (Kinetic Rapid Assessment) (OrthoKey, Italy) was used to determine two parameters: the AP translation and the Pivot Shift (PS). For each knee, 5 conditions were successively applied: intact knee (intact), knee with ALL (ALLsec) isolated section, knee with ALL and ACL section (ALL + ACLsec). Results: For the laximeter, the ACL and ALL sections led to a significant AP translation increase: + 2.1 mm for the ACL section, and + 0.9 mm for the ALL section. This difference was significant regardless of the level of force applied (p <0.05). For the triaxial accelerometer, the ACL and the ALL sections led to a significant AP translation increase: + 2.8 mm for ACL, and + 1.5 mm for ALL section. In contrast, for the PS, the increase was more consistent. There was a multiplier factor between the ACLsec condition and the ACL + ALLsec condition comparable to that between the intact condition and the ACLsec condition (P> 0.05). Conclusion: Whatever the device, the AP translation difference induced by the ALL injury, of the order of mm, remains too small to make the diagnosis of an ALL injury. The evaluation of the AP translation is therefore not a relevant to diagnostic an ALL injury. With greater increase, the evaluation of the rotatory laxity, through the PS test, is more relevant. In current practice, there is no clinical interest to use a laximeter or accelerometer on AP translation assessment to diagnosis an ALL injury in a deficient ACL knee. On the other hand, the use of a triaxial accelerometer to quantify the lateral tibial plateau acceleration in the pivot shift test appears to be relevant for detecting an ALL injury on a deficient ACL knee. These findings help provide clinical guidelines for more effective objective measures to diagnose ALL injury, and determine the most effective management for each patient.


2019 ◽  
Vol 7 (6_suppl4) ◽  
pp. 2325967119S0021
Author(s):  
Florian B. Imhoff ◽  
Julian Mehl ◽  
Elifho Obopilwe ◽  
Andreas Imhoff ◽  
Knut Beitzel

Aims and Objectives: To perform an anterior closing wedge osteotomy by 10° for slope reduction and investigate the effect of axial load and anterior drawer on forces on ACL graft, strain and femoro-tibial kinematics in a native, ACL-deficient and reconstructed knee. Materials and Methods: Ten cadaveric knees with an increased native slope were selected for this study based on CT meas-urements. An anterior closing-wedge osteotomy was performed by 10° and fixed with an external fixator. Tibial axial load (200 N, 400 N) was applied, while the tibial side was mounted on a free mov-ing X-Y-table with open rotation in 30° of knee flexion. Additionally, an anterior drawer (134 N) was performed with and without axial load (200 N). Specimens underwent native testing, cut ACL, and reconstructed ACL with a standardized quadruple semi-t/gracilis-allograft. Each condition was ran-domly tested with native slope and reduced slope. Change of forces on ACL-graft (attached load-cell) and strain on native ACL (via DVRT) were recorded. Throughout testing, 3D motion tracking captured anterior tibial translation (ATT) and rotation versus the fixed femur. Results: Preoperative, specimens showed an averaged lateral and medial slope of (average ±SD) 10° ± 1.4°, and age 48.2 ± 5.8years. Slope reduction significantly decreased forces on ACL graft by 17% (p=0.001) at 200 N and by 33% (p=0.0001) at 400 N of axial load. Furthermore, ATT was significantly decreased after slope reduc-tion in native (p=0.01), cut (p=0.005), and ACL-graft (p=0.01) status. Strain in native ACL de-creased by 9.7 ± 0.13% (p<0.0001) after slope reduction without any load. However, anterior drawer without axial load maintained significantly higher anterior tibial translation (native-pre 4.12 ± 0.65 mm vs. native-post 5.82 ± 1.51 mm, cut-ACL-pre 9.35 ± 1.57 mm vs cut-ACL-post 12.0 ± 3.53 mm, ACL-recon-pre 4.60 ± 0.97 mm vs. ACL-recon-post 5.73 ± 1.45 mm) and significantly higher forces on ACL graft (p=0.0006) after osteotomy. When axial load was combined with anterior drawer no significant change on ATT after osteotomy was observed. Rotational analysis did show a significant effect in the ACL cut condition due to slope correction. Overall, native and reconstruct-ed ACL showed the same tibial kinematics throughout testing. Conclusion: In general, osteotomy lowered ACL graft force and ACL strain when the joint was axially loaded. Anterior tibial translation was reduced even in an ACL deficient knee. When anterior drawer was performed without axial load, ATT was higher after slope reduction in every condition.


2017 ◽  
Vol 2 (s3) ◽  
pp. 12-16
Author(s):  
Mihai Roman ◽  
Octav Russu ◽  
Radu Prejbeanu ◽  
Adrian Todor ◽  
Vlad Predescu ◽  
...  

AbstractAlthough the anterolateral ligament (ALL) was described a long time ago, recent research shows a lot of interest regarding this structure. There is a high variability concerning its anatomy, especially its capsular/extracapsular situation and insertion sites. There is also some controversy about its ligamentous structure. It seems that it has a biomechanical role in restricting anterior tibial translation and internal rotation. The ALL complex seems to have a clinical significance, and a relationship with the pivot shift has been described. Although there are promising results recently, the surgical techniques of ALL reconstruction, in addition to anterior cruciate ligament reconstruction, have to be further investigated. A precise indication algorithm and patient selection criteria need to be established.


2019 ◽  
Vol 47 (6) ◽  
pp. 1376-1384 ◽  
Author(s):  
Frank R. Noyes ◽  
Lauren E. Huser ◽  
Brad Ashman ◽  
Michael Palmer

Background: Anterior cruciate ligament (ACL) graft conditioning protocols to decrease postoperative increases in anterior tibial translation and pivot-shift instability have not been established. Purpose: To determine what ACL graft conditioning protocols should be performed at surgery to decrease postoperative graft elongation after ACL reconstruction. Study Design: Controlled laboratory study. Methods: A 6 degrees of freedom robotic simulator evaluated 3 ACL graft constructs in 7 cadaver knees for a total of 19 graft specimens. Knees were tested before and after ACL sectioning and after ACL graft conditioning protocols before reconstruction. The ACL grafts consisted of a 6-strand semitendinosus-gracilis TightRope, bone–patellar tendon–bone TightRope, and bone–patellar tendon–bone with interference screws. Two graft conditioning protocols were used: (1) graft board tensioning (20 minutes, 80 N) and (2) cyclic conditioning (5°-120° of flexion, 90-N anterior tibial load) after graft reconstruction to determine the number of cycles needed to obtain a steady state with no graft elongation. After conditioning, the grafts were cycled a second time under anterior-posterior loading (100 N, 25° of flexion) and under pivot-shift loading (100 N anterior, 5-N·m internal rotation, 7 N·m valgus) to verify that the ACL flexion-extension conditioning protocol was effective. Results: Graft board tensioning did not produce a steady-state graft. Major increases in anterior tibial translation occurred in the flexion-extension graft-loading protocol at 25° of flexion (mean ± SD: semitendinosus-gracilis TightRope, 3.4 ± 1.1 mm; bone–patellar tendon–bone TightRope, 3.2 ± 1.0 mm; bone–patellar tendon–bone with interference screws, 2.4 ± 1.5 mm). The second method of graft conditioning (40 cycles, 5°-120° of flexion, 90-N anterior load) produced a stable conditioned state for all grafts, as the anterior translations of the anterior-posterior and pivot-shift cycles were statistically equivalent ( P < .05, 1-20 cycles). Conclusion: ACL graft board conditioning protocols are not effective, leading to deleterious ACL graft elongations after reconstruction. A secondary ACL graft conditioning protocol of 40 flexion-extension cycles under 90-N graft loading was required for a well-conditioned graft, preventing further elongation and restoring normal anterior-posterior and pivot-shift translations. Clinical Relevance: There is a combined need for graft board tensioning and robust cyclic ACL graft loading before final graft fixation to restore knee stability.


2018 ◽  
Vol 46 (7) ◽  
pp. 1559-1565 ◽  
Author(s):  
Kwadwo A. Owusu-Akyaw ◽  
Sophia Y. Kim ◽  
Charles E. Spritzer ◽  
Amber T. Collins ◽  
Zoë A. Englander ◽  
...  

Background: The incidence of anterior cruciate ligament (ACL) ruptures is 2 to 4 times higher in female athletes as compared with their male counterparts. As a result, a number of recent studies have addressed the hypothesis that female and male patients sustain ACL injuries via different mechanisms. The efficacy of prevention programs may be improved by a better understanding of whether there are differences in the injury mechanism between sexes. Hypothesis/Purpose: To compare knee positions at the time of a noncontact ACL injury between sexes. It was hypothesized that there would be no differences in the position of injury. Study Design: Controlled laboratory study. Methods: Clinical T2-weighted magnetic resonance imaging (MRI) scans from 30 participants (15 male and 15 female) with a noncontact ACL rupture were reviewed retrospectively. MRI scans were obtained within 1 month of injury. Participants had contusions associated with an ACL injury on both the medial and lateral articular surfaces of the femur and tibia. Three-dimensional models of the femur, tibia, and associated bone bruises were created via segmentation on MRI. The femur was positioned relative to the tibia to maximize bone bruise overlap, thereby predicting the bone positions near the time of the injury. Flexion, valgus, internal tibial rotation, and anterior tibial translation were measured in the predicted position of injury. Results: No statistically significant differences between male and female patients were detected in the position of injury with regard to knee flexion ( P = .66), valgus ( P = .87), internal tibial rotation ( P = .26), or anterior tibial translation ( P = .18). Conclusion: These findings suggest that a similar mechanism results in an ACL rupture in both male and female athletes with this pattern of bone bruising. Clinical Relevance: This study provides a novel comparison of male and female knee positions at the time of an ACL injury that may offer information to improve injury prevention strategies.


Sign in / Sign up

Export Citation Format

Share Document