An algorithm for the determination of optimal design parameters of x̄control charts

2004 ◽  
Vol 26 (1-2) ◽  
pp. 86-89 ◽  
Author(s):  
Fong-Jung Yu ◽  
Chinyao Low
2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Ruei-Tang Chen ◽  
Chih-Chieh Kang ◽  
Jeng-Feng Lin ◽  
Sheng-Wei Chiou ◽  
Hung-Hsiang Cheng ◽  
...  

Building integrated photovoltaics (BIPV) are an important application of future solar energy development. The incorporation of solar cells into windows must not only maintain indoor natural lighting but also generate electrical power at the same time. In our continuing effort to improve the design of diffusion solar window, a more fundamental and efficient three-layer structure—glass/EVA with TiO2nanoparticles embedded/glass—was proposed. In this work, a well-established ASAP ray-tracing model for a diffusive solar cell window was implemented to validate the outperformance of three-layer structure over primitive five-layer structure. Optical simulations were also implemented to perform its primary design for the determination of the optimal design parameters, such as the glass thickness, the EVA thickness, and the weight concentration of TiO2nanoparticles. Based on the simulation results, an optimal design for a three-layer diffusive solar cell window prototype was proposed. And the influence of both EVA thickness and glass thickness on the power edge-exitance (solar cell power generation efficiency) of a DSCW was thoroughly investigated.


2021 ◽  
Vol 274 ◽  
pp. 11008
Author(s):  
Minsur Zemdikhanov ◽  
Rustem Sakhapov ◽  
Ramil Gainutdinov

The influence of the design parameters and technological properties of the ground on the nature of the oscillatory movement of the blade of the working body of the earth-moving machine is investigated. The purpose of the study is to identify the force factors of the interaction of the oscillatory working body of the earth-moving machine with the ground and determine its optimal parameters. The equation of the oscillatory motion of the blade of the working body of the earthmoving machine depending on its design parameters and technological properties of the ground is obtained. The results can be used in the development and determination of the optimal design parameters of the working bodies of earth-moving machines.


Author(s):  
Coralie Germain ◽  
Stéphane Caro ◽  
Sébastien Briot ◽  
Philippe Wenger

This paper deals with the design optimization of the IRSBot-2 based on an optimized test trajectory for fast pick and place operations. The IRSBot-2 is a two degree-of-freedom translational parallel manipulator dedicated to fast and accurate pick-and-place operations. First, an optimization problem is formulated to determine the optimal test trajectory. This problem aims at finding the path defined with s-curves and the time trajectory that minimize the cycle time while the maximum acceleration of the moving platform remains lower than 20 G and the time trajectory functions are C2 continuous. Then, two design optimization problems are formulated to find the optimal design parameters of the IRSBot-2 based on the previous optimal test trajectory. These two problems are formulated so that they can be solved in cascade. The first problem aims to define the design parameters that affect the geometric and kinematic performances of the manipulator. The second problem is about the determination of the remaining parameters by considering elastostatic and dynamic performances. Finally, the optimal design parameters are given and will be used for the realization of an industrial prototype of the IRSBot-2.


Sign in / Sign up

Export Citation Format

Share Document