oscillatory movement
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 38)

H-INDEX

13
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Shimaa A. Abdellatef ◽  
Hisashi Tadakuma ◽  
Kangmin Yan ◽  
Takashi Fujiwara ◽  
Kodai Fukumoto ◽  
...  

AbstractDuring repetitive bending of cilia and flagella, axonemal dynein molecules move in an oscillatory manner along a microtubule (MT), but how the minus-end-directed motor dynein can oscillate back and forth is unknown. There are various factors that may regulate the dynein activities, e.g., the nexin-dynein regulatory complex, radial spokes, and central apparatus. In order to understand the basic mechanism of the oscillatory movement, we constructed a simple model system composed of MTs, outer-arm dyneins, and DNA origami that crosslinks the MTs. Electron microscopy (EM) showed patches of dynein molecules crossbridging two MTs in two opposite orientations; the oppositely oriented dyneins are expected to produce opposing forces. The optical trapping experiments showed that the dynein-MT-DNA-origami complex actually oscillate back and forth after photolysis of caged ATP. Intriguingly, the complex, when held at one end, showed repetitive bending motions. The results show that a simple system composed of ensembles of oppositely oriented dyneins, MTs, and inter-MT crosslinkers, without the additional regulatory structures, has an intrinsic ability to cause oscillation and repetitive bending motions.


2021 ◽  
pp. 593-601
Author(s):  
Farwa Ali ◽  
Jeremy K. Cutsforth-Gregory

Hyperkinetic movement disorders are characterized by excess movement. Tremor and myoclonus are the most common hyperkinetic movement disorders and signify various possible underlying causes or diagnoses. Tremor is an involuntary, rhythmic, oscillatory movement of a body part. It can be distinguished from myoclonus by its regular frequency and from chorea by its stereotyped nature. The subtypes of tremor vary in frequency, conditions of activation and relief, and associated signs and symptoms. Tremor can be primary, being the only manifestation of a condition, or secondary, being symptomatic of a metabolic state or other underlying disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jessica Frey ◽  
Christopher W. Hess ◽  
Liam Kugler ◽  
Manahil Wajid ◽  
Aparna Wagle Shukla

Transcranial magnetic stimulation (TMS) is a painless, non-invasive, and established brain stimulation technique to investigate human brain function. Over the last three decades, TMS has shed insight into the pathophysiology of many neurological disorders. Tremor is an involuntary, rhythmic oscillatory movement disorder commonly related to pathological oscillations propagated via the cerebello-thalamo-cortical pathway. Although tremor is the most common movement disorder and recent imaging studies have enhanced our understanding of the critical pathogenic networks, the underlying pathophysiology of different tremor syndromes is complex and still not fully understood. TMS has been used as a tool to further our understanding of tremor pathophysiology. In addition, repetitive TMS (rTMS) that can modulate brain functions through plasticity effects has been targeted to the tremor network to gain potential therapeutic benefits. However, evidence is available for only a few studies that included small patient samples with limited clinical follow-up. This review aims to discuss the role of TMS in advancing the pathophysiological understanding as well as emerging applications of rTMS for treating individual tremor syndromes. The review will focus on essential tremor, Parkinson's disease tremor, dystonic tremor syndrome, orthostatic tremor, and functional tremor.


2021 ◽  
Vol 12 ◽  
Author(s):  
Julio S. Lora-Millan ◽  
Gabriel Delgado-Oleas ◽  
Julián Benito-León ◽  
Eduardo Rocon

Tremor is defined as a rhythmic, involuntary oscillatory movement of a body part. Although everyone exhibits a certain degree of tremor, some pathologies lead to very disabling tremors. These pathological tremors constitute the most prevalent movement disorder, and they imply severe difficulties in performing activities of daily living. Although tremors are currently managed through pharmacotherapy or surgery, these treatments present significant associated drawbacks: drugs often induce side effects and show decreased effectiveness over years of use, while surgery is a hazardous procedure for a very low percentage of eligible patients. In this context, recent research demonstrated the feasibility of managing upper limb tremors through wearable technologies that suppress tremors by modifying limb biomechanics or applying counteracting forces. Furthermore, recent experiments with transcutaneous afferent stimulation showed significant tremor attenuation. In this regard, this article reviews the devices developed following these tremor management paradigms, such as robotic exoskeletons, soft robotic exoskeletons, and transcutaneous neurostimulators. These works are presented, and their effectiveness is discussed. The article also evaluates the different metrics used for the validation of these devices and the lack of a standard validation procedure that allows the comparison among them.


2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110408 ◽  
Author(s):  
Maja Čavić ◽  
Marko Penčić ◽  
Dragana Oros ◽  
Dijana Čavić ◽  
Marko Orošnjak ◽  
...  

The paper presents the type and dimensional synthesis of intermittent mechanisms for use in a thermoforming machine high-capacity stacking apparatus. The aim of this paper is to realize the intermittent motion of the working part of the stacker – conveyor, with a completely mechanical system that should enable the adjustment of the operating parameters of the stacker at a constant motor speed. Mechanical control ensures high positioning accuracy of the product ejection panel, as well as high repeatability of the motion cycle of the conveyor, which is key. Based on the set requirements, the concept of a planar mechanism of simple structure was chosen, which enables oscillatory movement of the output link for continuous motion of the input link, in combination with a one-way clutch (OWC). Four types of intermittent mechanisms have been proposed. However, multiple configurations of the same mechanism type can achieve the same output link motion interval, which is why 3 configurations for each mechanism type are considered, with a total of 4 output link motion intervals, which is 12 potential solutions for only one mechanism type. Afterwards, dimensional synthesis was performed for each type of mechanism by using the optimization method. Based on the analysis of the results, all of the mechanism types are potentially usable. After additional analyses, the optimal solution was chosen.


2021 ◽  
Author(s):  
Yeng-Yung Tsui ◽  
Hao-Yu Lin ◽  
Ting-Kai Wei ◽  
Yu-Jie Huang ◽  
Chi-Chuan Wang

Abstract A thin, flexible plate electrode was adopted to generate both ionic wind and vibration in our previous study. The design contains a metal inductor placed next to the plate electrode so that it is attracted to vibrate by the induced electrostatic force. The resulting flow was used to enhance heat transfer. In this study, a numerical methodology is developed to unveil the flow structure induced by the corona discharge and electrode vibration. The oscillatory movement of the electrode is modeled as a cantilever beam vibrating at its first resonant mode. The electric and flow fields are solved by the finite volume methods. It is shown that a jet-like flow is generated by the electric discharge. The oscillatory movement of the jet results in flat temperature profile in comparison with the corona only system. Owing to the unsteady characteristic, the jet strength is less strong than that without vibration. The calculated results are qualitatively in line with the experiments, though some considerable differences exist. It is found that the oscillatory flow brings about lower overall heat transfer effectiveness than that without vibration regardless of the corona voltage. On the contrary, experiments showed that heat transfer is enhanced at low corona voltages where the ionic wind is not so overwhelming. The disagreement is mainly attributed to the 2-D assumption made in the simulation. The experimental arrangement, the corona discharge, and the vortex flows resulted all are three-dimensional. Therefore, 3-D calculations become necessary.


2021 ◽  
Vol 8 (1) ◽  
pp. 60-72
Author(s):  
Mirko Aden ◽  
Paul Heinen ◽  
Alexander Olowinsky

AbstractWhen laser sources of high brilliance are used for the micro-welding of metals, small seam dimensions are generated. If the spatial power is modulated by a superposition of the linear feed rate and a circular-oscillatory movement of high frequency, the width of the seam is controlled by the amplitude of the circular movement. In this study, the irradiation pattern of the seam was calculated and reveals that some spots of the seam area are not irradiated, while other have been irradiated several times. The seam shapes were visualized with micro cross-sections for different laser powers, linear feed rates and oscillatory amplitudes. Thermal simulations were made to discuss the different seam shapes. A consequence of the oscillatory movement is the appearance of different solidification fronts, which are visible in the micro cross-sections.


2021 ◽  
Vol 12 ◽  
Author(s):  
Stanca M. Ciupe ◽  
Brittany P. Boribong ◽  
Sarah Kadelka ◽  
Caroline N. Jones

The highly controlled migration of neutrophils toward the site of an infection can be altered when they are trained with lipopolysaccharides (LPS), with high dose LPS enhancing neutrophil migratory pattern toward the bacterial derived source signal and super-low dose LPS inducing either migration toward an intermediary signal or dysregulation and oscillatory movement. Empirical studies that use microfluidic chemotaxis-chip devices with two opposing chemoattractants showed differential neutrophil migration after challenge with different LPS doses. The epigenetic alterations responsible for changes in neutrophil migratory behavior are unknown. We developed two mathematical models that evaluate the mechanistic interactions responsible for neutrophil migratory decision-making when exposed to competing chemoattractants and challenged with LPS. The first model, which considers the interactions between the receptor densities of two competing chemoattractants, their kinases, and LPS, displayed bistability between high and low ratios of primary to intermediary chemoattractant receptor densities. In particular, at equilibrium, we observe equal receptor densities for low LPS (< 15ng/mL); and dominance of receptors for the primary chemoattractant for high LPS (> 15ng/mL). The second model, which included additional interactions with an extracellular signal-regulated kinase in both phosphorylated and non-phosphorylated forms, has an additional dynamic outcome, oscillatory dynamics for both receptors, as seen in the data. In particular, it found equal receptor densities in the absence of oscillation for super-low and high LPS challenge (< 0.4 and 1.1 <LPS< 375 ng/mL); equal receptor densities with oscillatory receptor dynamics for super-low LPS (0.5 < LPS< 1.1ng/mL); and dominance of receptors for the primary chemoattractant for super-high LPS (>376 ng/mL). Predicting the mechanisms and the type of external LPS challenge responsible for neutrophils migration toward pro-inflammatory chemoattractants, migration toward pro-tolerant chemoattractants, or oscillatory movement is necessary knowledge in designing interventions against immune diseases, such as sepsis.


Author(s):  
Ryosuke Matsushima

Fundamentally, insects evolved on land and secondarily inhabited aquatic environments multiple times. To live underwater, aquatic insects have acquired enormously variable morphological, developmental, physiological, and ecological traits, such as gas exchange systems and swimming-related characteristics. Giant water scavenger beetles of the tribe Hydrophilini (Coleoptera: Hydrophilidae) are characterized by the presence of sternal keel, which often extends posteriorly. Despite being a conspicuous morphological trait, its function remains unclear. Here, I verified two hypotheses: keel affects (1) submergence time following air replacement as well as (2) speed and oscillatory movement during forward swimming in Hydrophilus acuminatus Motschulsky, 1854. Submergence time was affected by body mass rather than keel removal; in other words, larger individuals replaced their gas gills more frequently. Keel removal reduced swimming speed by 12.5%. These observations support hypothesis (2) and are also consistent with previous speculations that sternal keel is a key adaptation to swim, but the results showed that the degree of oscillation was closely related to body mass but not keel removal. Further studies are warranted to elucidate precise factors through which the presence of keel increases swimming speed. Such studies would provide clues into understanding the associations amongst body size, swimming methods, and morphological traits.


2021 ◽  
Vol 274 ◽  
pp. 11008
Author(s):  
Minsur Zemdikhanov ◽  
Rustem Sakhapov ◽  
Ramil Gainutdinov

The influence of the design parameters and technological properties of the ground on the nature of the oscillatory movement of the blade of the working body of the earth-moving machine is investigated. The purpose of the study is to identify the force factors of the interaction of the oscillatory working body of the earth-moving machine with the ground and determine its optimal parameters. The equation of the oscillatory motion of the blade of the working body of the earthmoving machine depending on its design parameters and technological properties of the ground is obtained. The results can be used in the development and determination of the optimal design parameters of the working bodies of earth-moving machines.


Sign in / Sign up

Export Citation Format

Share Document