Empirical models and optimal cutting parameters for cutting forces and surface roughness in hard milling of AISI H13 steel

2010 ◽  
Vol 51 (1-4) ◽  
pp. 45-55 ◽  
Author(s):  
Tongchao Ding ◽  
Song Zhang ◽  
Yuanwei Wang ◽  
Xiaoli Zhu
2020 ◽  
Vol 831 ◽  
pp. 35-39 ◽  
Author(s):  
The Vinh Do ◽  
Quoc Manh Nguyen ◽  
Minh Tan Pham

In metal cutting, surface roughness plays an important role in assessing the quality of processed products. The roughness depends greatly on the selection of machining parameters such as cooling conditions and cutting parameters. For this purpose, cooling conditions including dry, MQL, and Silica-based nanofluid MQL as well as cutting parameters including cutting speed, depth-of-cut and feed-rate were investigated to determine their influence on machining roughness during hard milling of AISI H13 steel. The DOE method developed by G. Taguchi was used to design the experiments. An analysis of the signal-to-noise response and ANOVA were carried to obtain the optimal values of cutting parameters for minimizing surface roughness. The results of the present study show that Silica-based nanofluid MQL, minimum feed-rate, minimum depth-of-cut, and maximum cutting speed is an optimal cutting condition for reducing machining roughness.


2014 ◽  
Vol 800-801 ◽  
pp. 590-595
Author(s):  
Qing Zhang ◽  
Song Zhang ◽  
Jia Man ◽  
Bin Zhao

Surface roughness has a significant effect on the performance of machined components. In the present study, a total of 49 end milling experiments on AISI H13 steel are conducted. Based on the experimental results, the signal-to-noise (S/N) ratio is employed to study the effects of cutting parameters (axial depth of cut, cutting speed, feed per tooth and radial depth of cut) on surface roughness. An ANN predicting model for surface roughness versus cutting parameters is developed based on the experimental results. The testing results show that the proposed model can be used as a satisfactory prediction for surface roughness.


2013 ◽  
Vol 690-693 ◽  
pp. 2403-2407
Author(s):  
Tong Chao Ding

In the present study, an attempt has been made to experimentally investigate the effects of the cutting parameters on cutting forces in hard milling of AISI H13 steel with coated carbide tools. Designed based on Taguchi method, four factor (cutting speed, feed, radial depth of cut and axial depth of cut) four level orthogonal experiments were conducted. Three components of cutting forces were measured during hard milling experiments and then variance analysis was performed. Finally, the linear regression model was established.


2020 ◽  
Vol 111 (9-10) ◽  
pp. 2419-2439
Author(s):  
Tamal Ghosh ◽  
Yi Wang ◽  
Kristian Martinsen ◽  
Kesheng Wang

Abstract Optimization of the end milling process is a combinatorial task due to the involvement of a large number of process variables and performance characteristics. Process-specific numerical models or mathematical functions are required for the evaluation of parametric combinations in order to improve the quality of the machined parts and machining time. This problem could be categorized as the offline data-driven optimization problem. For such problems, the surrogate or predictive models are useful, which could be employed to approximate the objective functions for the optimization algorithms. This paper presents a data-driven surrogate-assisted optimizer to model the end mill cutting of aluminum alloy on a desktop milling machine. To facilitate that, material removal rate (MRR), surface roughness (Ra), and cutting forces are considered as the functions of tool diameter, spindle speed, feed rate, and depth of cut. The principal methodology is developed using a Bayesian regularized neural network (surrogate) and a beetle antennae search algorithm (optimizer) to perform the process optimization. The relationships among the process responses are studied using Kohonen’s self-organizing map. The proposed methodology is successfully compared with three different optimization techniques and shown to outperform them with improvements of 40.98% for MRR and 10.56% for Ra. The proposed surrogate-assisted optimization method is prompt and efficient in handling the offline machining data. Finally, the validation has been done using the experimental end milling cutting carried out on aluminum alloy to measure the surface roughness, material removal rate, and cutting forces using dynamometer for the optimal cutting parameters on desktop milling center. From the estimated surface roughness value of 0.4651 μm, the optimal cutting parameters have given a maximum material removal rate of 44.027 mm3/s with less amplitude of cutting force on the workpiece. The obtained test results show that more optimal surface quality and material removal can be achieved with the optimal set of parameters.


Sign in / Sign up

Export Citation Format

Share Document