Five-axis tool path and feed rate optimization based on the cutting force–area quotient potential field

2014 ◽  
Vol 75 (9-12) ◽  
pp. 1661-1679 ◽  
Author(s):  
Ke Xu ◽  
Kai Tang
Author(s):  
W. B. Ferry ◽  
Y. Altintas

This paper presents process optimization for the five-axis flank milling of jet engine impellers based on the mechanics model explained in Part I. The process is optimized by varying the feed automatically as the tool-workpiece engagements, i.e., the process, vary along the tool path. The feed is adjusted by limiting feed-dependent peak outputs to a set of user-defined constraints. The constraints are the tool shank bending stress, tool deflection, maximum chip load (to avoid edge chipping), and the torque limit of the machine. The linear and angular feeds of the tool are optimized by two different methods—a multiconstraint based virtual adaptive control of the process and a nonlinear root-finding algorithm. The five-axis milling process is simulated in a virtual environment, and the resulting process outputs are stored at each position along the tool path. The process is recursively fitted to a first-order process with a time-varying gain and a fixed time constant, and a simple proportional-integral controller is adaptively tuned to operate the machine at threshold levels by manipulating the feed rate. As an alternative to the virtual adaptive process control, the feed rate is optimized by a nonlinear root-finding algorithm. The virtual cutting process is modeled as a black box function of feed and the optimum feed is solved for iteratively, respecting tool stress, tool deflection, torque, and chip load constraints. Both methods are shown to produce almost identical optimized feed rate profiles for the roughing tool path discussed in Paper I. The new feed rate profiles are shown to considerably reduce the cycle time of the impeller while avoiding process faults that may damage the part or the machine.


2012 ◽  
Vol 542-543 ◽  
pp. 551-554
Author(s):  
Xiao Bing Chen ◽  
Wen He Liao

Aiming at the problem of lower efficiency of complex surface machining with constant feed-rate, a method for feed-rate optimization based on S curve acceleration and deceleration control of piecewise tool path is researched. With constraints of kinematic characters of machine tool and geometric characters of tool path, tool path segments are obtained by curvature threshold method, and feed-rates are planned in these segments, then feed-rate transition of adjacent segments is processed by the method of S curve acceleration and deceleration control. Experimental result indicates that the proposed method is feasible and effective.


2020 ◽  
Vol 108 (7-8) ◽  
pp. 2645-2660
Author(s):  
Chen-Han Lee ◽  
Fangzhao Yang ◽  
Huicheng Zhou ◽  
Pengcheng Hu ◽  
Kang Min

Author(s):  
Hamid Ramazani Sales ◽  
Hossein Amirabadi ◽  
Hossein Nouri Hosseinabadi ◽  
Mohammad Reza Bagheri

2017 ◽  
Vol 4 (3) ◽  
pp. 203-217 ◽  
Author(s):  
Ke Xu ◽  
Jiarui Wang ◽  
Chih-Hsing Chu ◽  
Kai Tang

Abstract Five-axis flank milling has been commonly used in the manufacturing of complex workpieces because of its greater productivity than that of three-axis or five-axis end milling. The advantage of this milling operation largely depends on effective cutter location planning. The finished surface sometimes suffers from large geometrical errors induced by improper tool positioning, due to the non-developability of most ruled surfaces in industrial applications. In addition, a slender flank-milling cutter may be deflected when subjected to large cutting forces during the machining process, further degrading the surface quality or even breaking the cutter. This paper proposes a novel tool path planning scheme to address those problems. A simple but effective algorithm is developed to adaptively allocate a series of cutter locations over the design surface with each one being confined within an angular rotation range. The allocation result satisfies a given constraint of geometrical errors on the finished surface, which consists of the tool positioning errors at each cutter location and the sweeping errors between consecutive ones. In addition, a feed rate scheduling algorithm is proposed to maximize the machining efficiency subject to the cutting force constraint and the kinematical constraints of a specific machine configuration. Simulation and experimental tests are conducted to validate the effectiveness of the proposed algorithms. Both the machining efficiency and finish surface quality are greatly improved compared with conventional cutter locations. Highlights Tool position is bounded with respect to the geometrical machining error. Cutting force and kinematics during five-axis flank milling process are analyzed. An incremental adaptive flank milling tool path generation algorithm is proposed. Feed rate is smoothly assigned respecting cutting force and kinematic constraints.


Author(s):  
W. Ferry ◽  
Y. Altintas

This paper presents optimization schemes for the five-axis flank milling of jet engine impellers based on the mechanics model explained in Part I. The process is optimized by varying the feed automatically as the tool-workpiece engagements, i.e. the process, varies along the tool path. The feed is adjusted by limiting feed-dependent peak outputs to a set of user-defined constraints. These outputs are tool shank bending stress, tool deflection, maximum chip load (to avoid edge chipping) and the torque limit of the machine. The linear and angular feeds of the machine are optimized by two different methods — a multi-constraint based virtual adaptive control of the process and a non-linear root finding algorithm. The five-axis milling process is simulated in a virtual environment, and the resulting process outputs are stored at each position along the tool path. The process is recursively fitted to a first order process with a time varying gain and a fixed time constant, and a simple Proportional Integral controller is adaptively tuned to operate the machine at threshold levels by manipulating the feedrate. As an alternative to virtual adaptive process control, the feedrate is optimized by a non-linear root-finding algorithm. The optimum feed is solved for iteratively, respecting tool stress, tool deflection, torque and chip load constraints, using a non-linear root finding algorithm. Both methods are shown to produce almost identical optimized feed rate profiles for the roughing tool path discussed in Part I of the paper. The new feed rate profiles are shown to considerably reduce the cycle time of the impeller while avoiding process faults that may damage the part or the machine.


Sign in / Sign up

Export Citation Format

Share Document