Thermal error compensation of high-speed spindle system based on a modified BP neural network

2016 ◽  
Vol 89 (9-12) ◽  
pp. 3071-3085 ◽  
Author(s):  
Chi Ma ◽  
Liang Zhao ◽  
Xuesong Mei ◽  
Hu Shi ◽  
Jun Yang
Author(s):  
Chi Ma ◽  
Liang Zhao ◽  
Xuesong Mei ◽  
Hu Shi ◽  
Jun Yang

To improve the accuracy, generality and convergence of thermal error compensation model based on traditional neural networks, a genetic algorithm was proposed to optimize the number of the nodes in the hidden layer, the weights and the thresholds of the traditional neural network by considering the shortcomings of the traditional neural networks which converged slowly and was easy to fall into local minima. Subsequently, the grey cluster grouping and statistical correlation analysis were proposed to group temperature variables and select thermal sensitive points. Then, the thermal error models of the high-speed spindle system were proposed based on the back propagation and genetic algorithm–back propagation neural networks with practical thermal error sample data. Moreover, thermal error compensation equations of three directions and compensation strategy were presented, considering thermal elongation and radial tilt angles. Finally, the real-time thermal error compensation was implemented on the jig borer’s high-speed spindle system. The results showed that genetic algorithm–back propagation models showed its effectiveness in quickly solving the global minimum searching problem with perfect convergence and robustness under different working conditions. In addition, the spindle thermal error compensation method based on the genetic algorithm–back propagation neural network can improve the jig borer’s machining accuracy effectively. The results of thermal error compensation showed that the axial accuracy was improved by 85% after error compensation, and the axial maximum error decreased from 39 to 3.6 µm. Moreover, the X/ Y-direction accuracy can reach up to 82% and 85%, respectively, which demonstrated the effectiveness of the proposed methodology of measuring, modeling and compensating.


2015 ◽  
Vol 740 ◽  
pp. 120-126
Author(s):  
Zhi Peng Zhang ◽  
Kang Liu ◽  
Feng Guo

In order to improve the process precision of the machine tool, further development of SVMR was achieved by QT Creator. Support vector machine was applied to the ARM11 development board, SVMR model was online trained and real-time predicted the values of machine tool thermal error. Compared with the widely used BP neural network, this method has the characteristics of high compensation precision and strong generalization ability. Experiment research has proved that the stronger effectiveness and higher accuracy using this method.


Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 286
Author(s):  
Zhaolong Li ◽  
Bo Zhu ◽  
Ye Dai ◽  
Wenming Zhu ◽  
Qinghai Wang ◽  
...  

High-speed motorized spindle heating will produce thermal error, which is an important factor affecting the machining accuracy of machine tools. The thermal error model of high-speed motorized spindles can compensate for thermal error and improve machining accuracy effectively. In order to confirm the high precision thermal error model, Beetle antennae search algorithm (BAS) is proposed to optimize the thermal error prediction model of motorized spindle based on BP neural network. Through the thermal characteristic experiment, the A02 motorized spindle is used as the research object to obtain the temperature and axial thermal drift data of the motorized spindle at different speeds. Using fuzzy clustering and grey relational analysis to screen temperature-sensitive points. Beetle antennae search algorithm (BAS) is used to optimize the weights and thresholds of the BP neural network. Finally, the BAS-BP thermal error prediction model is established. Compared with BP and GA-BP models, the results show that BAS-BP has higher prediction accuracy than BP and GA-BP models at different speeds. Therefore, the BAS-BP model is suitable for prediction and compensation of spindle thermal error.


Author(s):  
Chi Ma ◽  
Liang Zhao ◽  
Hu Shi ◽  
Xuesong Mei ◽  
Jun Yang

In order to improve the prediction accuracy of the thermal error models, grey cluster grouping and correlation analysis were proposed to optimize and select the heat-sensitive points to improve the performances of the thermal error model and minimize the independent variables to reduce modeling cost. Subsequently, the neural network with back propagation (BP) algorithm was proposed to construct the strongly nonlinear mapping relationship between spindle thermal errors and typical temperature variables. However, the shortcomings of the BP network restricted the accuracy, robustness and convergence of thermal error models. Then, a genetic algorithm (GA), which regarded the reciprocal of the absolute value sum of the differences between the predicted and desired outputs as the number of nodes in the hidden layer, was proposed to optimize the structure and initial values of the network. And the number of the nodes in the hidden layer can be determined by performing such operations of GAs. Moreover, the reciprocal of the sum square of the difference between the predicted and expected outputs of individuals is regarded as the fitness function and the weights and thresholds of the BP neural network are optimized by setting the control parameters of GAs. Then, the elongation and thermal tilt angle models of high-speed spindles were proposed based on BP and GA-BP networks and the fitting and prediction abilities were compared. The results showed that the grey cluster grouping and correlation analysis could depress the multicollinearity among temperature variables and improve the stability and accuracy of the thermal error models. Moreover, although the traditional BP network had better fitting ability, its convergence and generality were far worse than the GA-BP model and it is more suitable to use the GA-BP neural network as the thermal error modeling method in the compensation system.


Sign in / Sign up

Export Citation Format

Share Document