Structural stability analysis and optimization of the quadrotor unmanned aerial vehicles via the concept of Lyapunov exponents

2016 ◽  
Vol 94 (9-12) ◽  
pp. 3217-3227 ◽  
Author(s):  
Yunping Liu ◽  
Cheng Chen ◽  
Hongtao Wu ◽  
Yonghong Zhang ◽  
Ping Mei
2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Revant Adlakha ◽  
Minghui Zheng

Abstract This paper presents a two-step optimization-based design method for iterative learning control and applies it onto the quadrotor unmanned aerial vehicles (UAVs) trajectory tracking problem. Iterative learning control aims to improve the tracking performance through learning from errors over iterations in repetitively operated systems. The tracking errors from previous iterations are injected into a learning filter and a robust filter to generate the learning signal. The design of the two filters usually involves nontrivial tuning work. This paper presents a new two-optimization design method for the iterative learning control, which is easy to obtain and implement. In particular, the learning filter design problem is transferred into a feedback controller design problem for a purposely constructed system, which is solved based on H-infinity optimal control theory thereafter. The robust filter is then obtained by solving an additional optimization to guarantee the learning convergence. Through the proposed design method, the learning performance is optimized and the system's stability is guaranteed. The proposed two-step optimization-based design method and the regarding iterative learning control algorithm are validated by both numerical and experimental studies.


2020 ◽  
Vol 12 ◽  
pp. 175682932097357
Author(s):  
E Javier Ollervides-Vazquez ◽  
Erik G Rojo-Rodriguez ◽  
Octavio Garcia-Salazar ◽  
Luis Amezquita-Brooks ◽  
Pedro Castillo ◽  
...  

This paper presents an algorithm based on fuzzy theory for the formation flight of the multi-quadrotors. For this purpose, the mathematical model of N-quadrotor unmanned aerial vehicles is presented using the Newton-Euler formulation. The strategy of the formation flight is based on a structure composed by a sectorial fuzzy controller and the linear systems whose state variables are the position and velocity of the ith quadrotor. The stability analysis is described as a generalized form for N-quadrotor unmanned aerial vehicles and it is based on the Lyapunov theory. This analysis demonstrates that the closed-loop system is globally asymptotically stable so that the quadrotors unmanned aerial vehicles reach the consensus. Numerical simulation demonstrates the robustness of the proposed scheme for the formation flight even in the presence of disturbances. Finally, experimental results show the feasibility of the proposed algorithm for the formation flight of multiple unmanned aerial vehicles.


Sign in / Sign up

Export Citation Format

Share Document