Surface microstructure of titanium alloy thin-walled parts at ultrasonic vibration-assisted milling

2018 ◽  
Vol 101 (1-4) ◽  
pp. 1007-1021 ◽  
Author(s):  
Jinglin Tong ◽  
Guan Wei ◽  
Li Zhao ◽  
Xiaoliang Wang ◽  
Junjin Ma

2018 ◽  
Vol 764 ◽  
pp. 252-260
Author(s):  
Feng Jiao ◽  
Cheng Lin Yao ◽  
Li Zhao ◽  
Feng Qi

Hard machinability of titanium alloy material and poor stiffness of thin-walled part restricted the extensive applications of titanium alloy thin-walled component in aerospace engineering. In order to increase geometric accuracy, a method of ultrasonic vibration assisted (UVA) end milling technology with workpiece vibrating in feeding direction was put forward in this paper, and the corresponding milling force characteristics in UVA milling of titanium alloy TC4 thin-walled workpiece were researched. Through theoretical analysis, the path of cutter tooth in UVA milling was analyzed. The important factors that affect milling force are obtained with the signal to noise ratio analysis. Results show that the radial cutting force in UVA milling is smaller than that in traditional milling. Cutting force fluctuate in high frequency when treated ultrasonic vibration. And the axial cutting feed is the core factor that affects the milling force. The research provides a certain reference for the precision milling of titanium alloy thin-walled parts.



2018 ◽  
Vol 764 ◽  
pp. 174-183
Author(s):  
Feng Jiao ◽  
Li Zhao ◽  
Cheng Lin Yao ◽  
Feng Qi

The hard machinability of titanium alloy material and the poor stiffness of thin-walled parts hindered the extensive application of titanium alloy thin-walled components in aerospace engineering. In order to heighten the geometric accuracy in the processing, the ultrasonic vibration assisted (UVA) end milling technology with workpiece vibrating in feed direction was put forward in this paper, and characteristics of the milling deformation in UVA milling of titanium alloy TC4 thin-walled workpieces were researched. Through the theoretical analysis, the cutting force and deformation characteristics in UVA milling were clarified. Based on the range analysis of orthogonal experiment, the effects of milling parameters and ultrasonic amplitude on the deflection displacement and the milling deformation of workpieces are obtained. Research results show that the deflection displacement in the process of UVA milling affects the thickness error of the thin wall. Ultrasonic parameters as well as milling parameters should be optimized to obtain higher machining accuracy. The research provides a certain reference for the precision milling of titanium alloy thin-walled parts.





2021 ◽  
Author(s):  
Weibo Xie ◽  
Xikui Wang ◽  
Erbo Liu ◽  
Jian Wang ◽  
Xiaobin Tang ◽  
...  

Abstract In order to study the influence of rotational speed and amplitude on the surface integrity, TC18 titanium alloy samples were milled by the process of conventional milling and longitudinal ultrasonic vibration assisted milling. The experimental data were obtained by dynamometer, thermometer, scanning electron microscope, X-ray diffractometer and three-dimensional surface topography instrument for observation and analysis. The results show that the rotational speed has a significant effect on the cutting force, cutting temperature, surface morphology and surface residual stress. Compared with ordinary milling, the surface micro-texture produced by ultrasonic vibration milling is more regular, , and with the increase of rotational speed, the influence of ultrasonic vibration on cutting force and cutting temperature decrease. There are adverse effects on surface roughness after ultrasonic vibration superposition. The influence of ultrasonic vibration on the surface residual compressive stress is also greatly reduced when the rotational speed is greater than 2400 rpm. In addition, a certain depth of plastic deformation layer can be formed under the surface of ultrasonic vibration machining, and the depth of deformation layer increases with the increase of vibration.



2012 ◽  
pp. 121130131826005 ◽  
Author(s):  
Yuyong Chen ◽  
Ertuan Zhao ◽  
Fantao Kong ◽  
Shulong Xiao


2017 ◽  
Vol 95 (5-8) ◽  
pp. 2865-2874 ◽  
Author(s):  
Chun Liu ◽  
Jie Sun ◽  
Yanle Li ◽  
Jianfeng Li


Sign in / Sign up

Export Citation Format

Share Document