Thermal modeling and experimental investigation on the influences of the process parameters on warm incremental sheet metal forming of titanium grade 2 using electric heating technique

2020 ◽  
Vol 110 (1-2) ◽  
pp. 255-274
Author(s):  
R. Mohanraj ◽  
S. Elangovan
2019 ◽  
Vol 13 (2) ◽  
pp. 4911-4927
Author(s):  
Swagatika Mohanty ◽  
Srinivasa Prakash Regalla ◽  
Yendluri Venkata Daseswara Rao

Product quality and production time are critical constraints in sheet metal forming. These are normally measured in terms of surface roughness and forming time, respectively. Incremental sheet metal forming is considered as most suitable for small batch production specifically because it is a die-less manufacturing process and needs only a simple generic fixture. The surface roughness and forming time depend on several process parameters, among which the wall angle, step depth, feed rate, sheet thickness, and spindle speed have a greater impact on forming time and surface roughness. In the present work, the effect of step depth, feed rate and wall angle on the surface roughness and forming time have been investigated for constant 1.2 mm thick Al-1100 sheet and at a constant spindle speed of 1300 rpm. Since the variable effects of these parameters necessitate multi-objective optimization, the Taguchi L9 orthogonal array has been used to plan the experiments and the significance of parameters and their interactions have been determined using analysis of variance (ANOVA) technique. The optimum response has been brought out using response surfaces. Finally, the findings of response surface method have been validated by conducting additional experiments at the intermediate values of the parameters and these results were found to be in agreement with the predictions of Taguchi method and response surface method.


Author(s):  
Puneet Tandon ◽  
Om Namah Sharma

Incremental sheet metal forming is an evolving process, which is suitable for the production of limited quantities of sheet metal components. The main advantages of this process over conventional forming processes are reduced setup cost and manufacturing lead time, as it eliminates the need of special purpose dies, improves formability, reduces forming forces, and provides process flexibility. The objective of this work is to investigate a new hybrid-forming process, which intends to combine incremental sheet metal forming with deep drawing process and has been named as “incremental stretch drawing.” A number of setups and fixtures were developed to carry out experiments to achieve incremental stretch drawing and understand the mechanism of the process. This process addresses some of the challenges of incremental sheet metal forming, that is, limited formability in terms of forming depth, especially at steeper wall angles and subsequent thinning of sheet. It is observed that the proposed process is able to reduce thinning as much as about 300%, considering same forming depth for incremental sheet metal forming and incremental stretch drawing processes. Improvement in formability, in terms of forming depths, also has been observed to be near about 100% in particular cases.


Author(s):  
R. Mohanraj ◽  
S. Elangovan

Driven by an increasing demand from the aerospace industry, thin sheet forming of titanium and its alloys is gaining prominence in scientific research. The design and manufacture of aerospace components requires the utmost precision and accuracy. It is essential to have good control over the process parameters of the forming process. Processes such as incremental sheet metal forming (ISMF) are highly controlled in the current manufacturing environment, but improvements in geometric accuracy and thinning are still needed. Although ISMF has greater process competence for manufacturing airframe structures with minimal costs, the process has its own negative effect on geometric accuracy due to elastic springback and sheet thinning. In this study, finite element analysis and experimental work are performed, considering process parameters such as spindle speed, feed rate, step depth, and tool diameter, to study the geometric accuracy and thinning of Ti–6Al–4V alloy sheet, while incrementally forming an aerospace component with asymmetrical geometry. The results are useful for understanding the geometric accuracy and thinning effects on parts manufactured by single point incremental forming (SPIF). Results from finite element analysis and experimental work are compared and found to be in good agreement.


2009 ◽  
Vol 83-86 ◽  
pp. 1113-1120 ◽  
Author(s):  
Mehdi Vahdati ◽  
Mohammad Sedighi ◽  
Hossein Khoshkish

In this paper, spring-back and its effect on geometrical and dimensional accuracy of incremental sheet metal forming (ISMF) process has been studied. The influence of process parameters such as: vertical step size, sheet thickness, tool diameter, feed rate and spindle speed have been investigated. A series of experimental tests have been carried out for a straight groove bead-shape part made of aluminum sheets. A reliable statistical analysis has been carried out to extract the importance of each parameter. The obtained model permits to select appropriate process parameters to reduce spring-back effectively.


2020 ◽  
Vol 44 (2) ◽  
pp. 179-188
Author(s):  
S. Pratheesh Kumar ◽  
S. Elangovan ◽  
R. Mohanraj

The contemporary sheet metal industry employs forming methods that use a precise die and punch to form components with precise tolerances. In mass production, the high cost of manufacturing dies and punches is absorbed by the number of components formed, whereas this is not the case for low volume production where it increases the manufacturing cost of the products. To overcome the demand for the development of manufacturing technologies that are both agile and meet industrial requirements, an incremental sheet metal forming experiment was carried out on Inconel 718. The incremental sheet metal forming process in the research stage needs to be improved both in terms of accuracy and product quality. The main process parameters involved in the study are incremental depth, rotational speed, and feed rate of the forming tool. Based on the process parameters, experiments are conducted using the Taguchi L9 orthogonal array design and responses such as geometrical accuracy, surface roughness, and thinning are studied. The forming limit and micro-structural study allow us to understand the forming behavior of Inconel 718, which will enhance the applicability of the material.


Sign in / Sign up

Export Citation Format

Share Document