An Analytical Model to Reduce Spring-Back in Incremental Sheet Metal Forming (ISMF) Process

2009 ◽  
Vol 83-86 ◽  
pp. 1113-1120 ◽  
Author(s):  
Mehdi Vahdati ◽  
Mohammad Sedighi ◽  
Hossein Khoshkish

In this paper, spring-back and its effect on geometrical and dimensional accuracy of incremental sheet metal forming (ISMF) process has been studied. The influence of process parameters such as: vertical step size, sheet thickness, tool diameter, feed rate and spindle speed have been investigated. A series of experimental tests have been carried out for a straight groove bead-shape part made of aluminum sheets. A reliable statistical analysis has been carried out to extract the importance of each parameter. The obtained model permits to select appropriate process parameters to reduce spring-back effectively.

Author(s):  
Muhammad Fakhruddin ◽  
Mochammad Agus Choiron ◽  
Anindito Purnowidodo

Abstract                  The experimental study of the influence of process parameters towards collar height on incremental backward hole-flanging (IBHF) process with aluminium plate workpiece was presented in this paper. The effect of process parameters toward collar height which produced by IBHF process was investigated. Experiments were performed with a CNC machine, a 30o conical forming tool, and aluminium plates. The process parameters are feed speed with two levels, radial forming step size with three, and axial forming step size with three levels. Some parameters were kept constant, i.e., spindle speed, initial hole diameter, final hole diameter, and conical forming tool diameter. Digital Vernier caliper was used to measure the height of the collar. Experimental results of IBHF process have shown that the feed speed (vf) parameter has no effect toward collar height. Increased radial forming step size (Δx/y), increased the collar height also. Increased the axial forming step size (Δz) reduced the collar height. Keywords: hole-flanging, incremental sheet metal forming, incremental backward.


2019 ◽  
Vol 13 (2) ◽  
pp. 4911-4927
Author(s):  
Swagatika Mohanty ◽  
Srinivasa Prakash Regalla ◽  
Yendluri Venkata Daseswara Rao

Product quality and production time are critical constraints in sheet metal forming. These are normally measured in terms of surface roughness and forming time, respectively. Incremental sheet metal forming is considered as most suitable for small batch production specifically because it is a die-less manufacturing process and needs only a simple generic fixture. The surface roughness and forming time depend on several process parameters, among which the wall angle, step depth, feed rate, sheet thickness, and spindle speed have a greater impact on forming time and surface roughness. In the present work, the effect of step depth, feed rate and wall angle on the surface roughness and forming time have been investigated for constant 1.2 mm thick Al-1100 sheet and at a constant spindle speed of 1300 rpm. Since the variable effects of these parameters necessitate multi-objective optimization, the Taguchi L9 orthogonal array has been used to plan the experiments and the significance of parameters and their interactions have been determined using analysis of variance (ANOVA) technique. The optimum response has been brought out using response surfaces. Finally, the findings of response surface method have been validated by conducting additional experiments at the intermediate values of the parameters and these results were found to be in agreement with the predictions of Taguchi method and response surface method.


2011 ◽  
Vol 291-294 ◽  
pp. 672-675
Author(s):  
Jafar Bazrafshan ◽  
A. Gorji ◽  
A. Taghizadeh Armaky

One of the most sensitive features of sheet metal forming processes is the elastic recovery during unloading, called spring-back, which leads to some geometric changes in the product. This phenomenon will affect bend angle and bend curvature, and can be influenced by various factors. In this research, the effects of sheet thickness and die radiuses an sheet anisotropy on spring-back in L-die bending of CK67 steel sheet were studied by experiments and numerical simulations.


Author(s):  
R. Mohanraj ◽  
S. Elangovan

Driven by an increasing demand from the aerospace industry, thin sheet forming of titanium and its alloys is gaining prominence in scientific research. The design and manufacture of aerospace components requires the utmost precision and accuracy. It is essential to have good control over the process parameters of the forming process. Processes such as incremental sheet metal forming (ISMF) are highly controlled in the current manufacturing environment, but improvements in geometric accuracy and thinning are still needed. Although ISMF has greater process competence for manufacturing airframe structures with minimal costs, the process has its own negative effect on geometric accuracy due to elastic springback and sheet thinning. In this study, finite element analysis and experimental work are performed, considering process parameters such as spindle speed, feed rate, step depth, and tool diameter, to study the geometric accuracy and thinning of Ti–6Al–4V alloy sheet, while incrementally forming an aerospace component with asymmetrical geometry. The results are useful for understanding the geometric accuracy and thinning effects on parts manufactured by single point incremental forming (SPIF). Results from finite element analysis and experimental work are compared and found to be in good agreement.


Author(s):  
A. Bhattacharya ◽  
Samarjit Singh ◽  
K. Maneesh ◽  
N. Venkata Reddy ◽  
Jian Cao

Incremental sheet metal forming (ISMF) has demonstrated its great potential to form complex three-dimensional parts without using a component specific tooling. The die-less nature in incremental forming provides a competitive alternative for economically and effectively fabricating low-volume functional sheet parts. However, ISMF has limitations with respect to maximum formable wall angle, geometrical accuracy and surface finish of the component. In the present work, an experimental study is carried out to study the effect of incremental sheet metal forming process variables on maximum formable angle and surface finish. Box-Behnken method is used to design the experiments for formability study and full factorial method is used for surface finish study. Analysis of experimental results indicates that formability in incremental forming decreases with increase in tool diameter. Formable angle first increases and then decreases with incremental depth and it is also observed that the variation in the formable angle is not significant in the range of incremental depths considered to produce good surface finishes during the present study. A simple analysis model is used to estimate the stress values during incremental sheet metal forming assuming that the deformation occurs predominantly under plane strain condition. A stress based criterion is used along with the above mentioned analysis to predict the formability in ISMF and its predictions are in very good agreement with the experimental results. Surface roughness decreases with increase in tool diameter for all incremental depths. Surface roughness increases first with increase in incremental depth up to certain angle and then decreases. Surface roughness value decreases with increase in wall angle.


Sign in / Sign up

Export Citation Format

Share Document