scholarly journals A review on cutting tool technology in machining of Ni-based superalloys

2020 ◽  
Vol 110 (11-12) ◽  
pp. 2863-2879
Author(s):  
Wei Fan ◽  
Wei Ji ◽  
Lihui Wang ◽  
Lianyu Zheng ◽  
Yahui Wang

Abstract In this paper, a state-of-the-art review on cutting tool technology in machining of Ni-based superalloys is presented to better understand the current status and to identify future directions of research and development of cutting tool technologies. First, past review articles related to the machining of Ni-based superalloys are summarized. Then machinability of superalloys is introduced, together with the reported methods used in cutting tool design. The current researches on cutting tools in the machining of superalloys are presented in different categories in terms of tool materials, i.e., carbide, ceramics, and Polycrystalline cubic boron nitride (PCBN). Moreover, a set of research issues are identified and highlighted to improve the machining of superalloys. Finally, discussions on the future development are presented, in the areas of new materials/geometries, functional surfaces on the cutting tool, and data-driven comprehensive optimization.

2018 ◽  
Vol 142 ◽  
pp. 03002
Author(s):  
Yunhai Jia ◽  
Lixin Zhu

Ti-6Al-4V components are the most widely used titanium alloy products not only in the aerospace industry, but also for bio-medical applications. The machine-ability of titanium alloys is impaired by their high temperature chemical reactivity, low thermal conductivity and low modulus of elasticity. Polycrystalline cubic boron nitride represents a substitute tool material for turning titanium alloys due to its high hardness, wear resistance, thermal stability and hot red hardness. For determination of suitable cutting parameters in dry turning Ti-6AL-4V alloy by Polycrystalline cubic boron nitride cutting tools, the samples, 300mm in length and 100mm in diameter, were dry machined in a lathe. The turning suitable parameters, such as cutting speed, feed rate and cut depth were determined according to workpieces surface roughness and tools flank wear based on orthogonal experimental design. The experiment showed that the cutting speed in the range of 160~180 m/min, the feed rate is 0.15 mm/rev and the depth of cut is 0.20mm, ideal workpiece surface roughness and little cutting tools flank wear can be obtained.


1999 ◽  
Author(s):  
Katsuhito Yoshida ◽  
Satoru Kukino ◽  
Takashi Harada ◽  
Tomohiro Fukaya ◽  
Junichi Shiraishi ◽  
...  

Abstract PCBN (Polycrystalline Cubic Boron Nitride) cutting tools have become very familiar in the industries for cutting hardened steel parts and the demand for PCBN tools is growing rapidly. One of the reasons for this is the trend of replacing grinding processes with cutting. Although the trend of processing is to use more cutting, there still remains grinding in many processing fields. High precision machining and high speed interrupted machining have been such fields. In this study it has been verified that a novel cutting method can be applied to high precision machining with the smoothness of Rz 0.8 μm and that a new PCBN has sufficient reliability against tool failure in high speed (< 250m/min) interrupted cutting. Thus cutting has become applicable to those machining and the trend of replacement of grinding with cutting will be enhanced. Those new technologies will be introduced in this report.


2011 ◽  
Vol 188 ◽  
pp. 38-42
Author(s):  
Dong Dong Wan ◽  
Xu Hong Guo ◽  
Chi Hong Wang

Three different cutting tools (ceramics CC6050, cubic boron nitride CB7025, carbide GC2025) were used for dry cutting of 3 groups of ADI which were heat-treated separately under different quenching temperatures. With the unified cutting parameters, the wear of tool flank of each cutter was studied and the main influencing factors of the wear were analyzed. Results showed that when the cutting parameters ap =0.2mm, f =0.16mm/r, vc =108m/min and the cutting tool was determined, the higher the quenching temperature was the lower the hardness of the test bars were and the tool flank wear was less; When the quenching temperature was determined, the more the produced BUE (build up edge) of the cutting tool was the less the tool flank wear was.


2014 ◽  
Vol 668-669 ◽  
pp. 56-59
Author(s):  
Yun Hai Jia ◽  
Cheng Zhe Guan

Electrical discharge grinding is part of the most widely used methods to machine polycrystalline cubic boron nitride cutting tool. Polycrystalline cubic boron nitride compact samples processed in domestic with different grain size are the research object. Electrode running speed, peak current, and pulse width are selected as the main process parameters. The material removal volume and electrode loss set as the evaluation index of productive efficiency; workpiece surface roughness value sets as an evaluation standard of processing quality. Through electrical discharge grinding experiments, combined with scanning electron microscopy observation, energy spectrum analyzer and roughness tester, the influences of the main process parameters on electrical discharge grinding are analyzed, polycrystalline cubic boron nitride compact electrical discharge grinding technics & mechanism are summarized.


Sign in / Sign up

Export Citation Format

Share Document