An advanced technique for determining NC machining tool path to fabricate drawing die surface considering non-uniform thickness distribution in stamped blank

2020 ◽  
Vol 111 (5-6) ◽  
pp. 1445-1455
Author(s):  
Zhihui Gong ◽  
Mandeep Singh ◽  
Dongbin Wei
Author(s):  
Yuan-Shin Lee ◽  
Tien-Chien Chang

Abstract In this paper, a methodology of applying convex hull property in solving the tool interference problem is presented for 5-axis NC machining of free-form surfaces. Instead of exhausted point-by-point checking for possible tool interference, a quick checking can be done by using the convex hull constructed from the control polygon of free-form surface modeling. Global tool interference in 5-axis NC machining is detected using the convex hull of the free-form surface. A correction method for removing tool interference has also been developed to generate correct tool path for 5-axis NC machining. The inter-surface tool interference can be avoided by using the developed technique.


2010 ◽  
Vol 23 (4) ◽  
pp. 486-494 ◽  
Author(s):  
Xu Rufeng ◽  
Chen Zhitong ◽  
Chen Wuyi ◽  
Wu Xianzhen ◽  
Zhu Jianjun

2015 ◽  
Vol 799-800 ◽  
pp. 1193-1196 ◽  
Author(s):  
Shu Kun Cao ◽  
Yong Hong Deng ◽  
Kun Zhang ◽  
Shi Ping Liu ◽  
Wen Jing Meng

In order to solve the problem of free surface processing of tool redundancy,the tool lack problem, and the demerit of low machining efficiency, etc., based on the iso-scallop method, based on the iso-scallop method, we put forward a kind of free surface NC machining tool path optimization algorithm,make the surface boundary discrete point set, which is generated by point set ring machining path, diagonal connection and then use the path of the adjacent curve, forming cutting tool machining line.finally, the calculation of step size and line spacing in machining path based on the iso-scallop method and the process of feeding direction is optimized. Proved by the simulation process, the algorithm is feasible and can effectively avoid tool redundancy and tool lack problems,concesquently, processing efficiency improved significantly.


2013 ◽  
Vol 274 ◽  
pp. 121-123 ◽  
Author(s):  
Cun Guang Yu

NURBS curve fitting is used for tool path planning for sculptured surface NC machining. The cutter location data is parameterized by equal chord arc length parameterization, and Centripetal Parameterization is improved. It is not only more approach to curves nature equation in theory, but also closer to the interpolated curves in actual fitting. It is directly to reflect the curvature of curves of cutter location in NC machining.


2013 ◽  
Vol 385-386 ◽  
pp. 726-730
Author(s):  
Ren Xian Geng ◽  
Hou Jun Qi ◽  
Xin Pan ◽  
Zhi Gang Liu

Using five-axis equipment for NC machining of free-form surface is an effective way to improve machining quality and machining efficiency, the surface shape and the five coordinate of the complexity of the machine tool movement led to its tool path planning technology is difficult. The paper aimed at the five coordinate NC machining of free-form surface and puts forward a five-axis NC machining method based on triangular facet model. The research based on triangular facet model, using constant scallop height method to calculate the step distance and improve the cutting efficiency to a great extent. In the process, tool path is generated, combining with the method of configuration space interference free.


2015 ◽  
Vol 639 ◽  
pp. 535-542 ◽  
Author(s):  
Bin Lu ◽  
Dong Kai Xu ◽  
Run Zhe Liu ◽  
Heng An Ou ◽  
Hui Long ◽  
...  

Incremental sheet forming (ISF) is a highly versatile and flexible process for rapid manufacturing of complex sheet metal parts. Comparing to conventional sheet forming processes, ISF is of a clear advantage in manufacturing small batch or customized products such as cranial implant. Although effort on cranial reconstruction by using incremental sheet forming approach has been made in recent years, research has been mostly based on the single point incremental forming (SPIF) strategy and there are still considerable technical challenges for achieving better geometric accuracy, thickness distribution and complex cranial shape. In addition, the use of a backing plate or supporting die reduces the process flexibility and increases the cost. To overcome these limitations, double side incremental sheet forming (DSIF) process is employed for forming Grade 1 pure titanium sheet by using different toolpath strategies. The geometric accuracy and thickness distribution of the final part are evaluated so the optimized tool path strategies are developed. This leads to an assessment of the DSIF based approach for the application in cranial reconstruction.


2010 ◽  
Vol 139-141 ◽  
pp. 1322-1327
Author(s):  
Dian Zhu Sun ◽  
Jian Liu ◽  
Yan Rui Li ◽  
Zong Wei Niu

To achieve the accurate duplication of product in reverse engineering, we proposed an algorithm for generating multi-axis NC machining tool-path directly based on scattered point cloud. At first, we obtained the neighborhoods of tool-path section based on the dynamic spatial index of scattered point cloud and from which we selected the matching points. Then the tool-path section points can be obtained through intersection of the tool-path section and the lines which link the matching points, and the normal vectors of tool-path section points can be calculated based on the differential geometry property of local reference data. Finally we computed the cutter location points by means of projection method and sorted them based on the minimum spanning tree algorithm to form the tool-path. With the results of several experiments, the high precision and efficiency of this algorithm are verified.


2011 ◽  
Vol 314-316 ◽  
pp. 571-575
Author(s):  
Zhen Zhe Li ◽  
Gui Ying Shen ◽  
Xiao Qian Wang ◽  
Mei Qin Li ◽  
Yun De Shen

Obtaining a uniform thickness of the final product using thermoforming is difficult, and the thickness distribution depends strongly on the distribution of the sheet temperature. In this paper, the time-dependent temperature distribution of the total sheets in the storing process was studied because the temperature after the storing process is the initial temperature of the preheating process. An analysis code for simulating the storing process was developed under the condition that the thermal conductivity caused by contact resistance between sheets was assumed as a large value. In this study, the number of sheets in the storing room was adjusted for finding out the effect of it. The analysis results show that maximum temperature difference between sheets was significantly different when adjusting the number of sheets in the storing room. The temperature distribution of the total sheets and the method for analysis in this study will be used to optimize the storing process for higher quality of final products.


Sign in / Sign up

Export Citation Format

Share Document