Removal mechanism of magnetic abrasive finishing on aluminum and magnesium alloys

Author(s):  
Peixin Zhu ◽  
Guixiang Zhang ◽  
Jiajing Du ◽  
Linzhi Jiang ◽  
Peng Zhang ◽  
...  
2008 ◽  
Vol 53-54 ◽  
pp. 57-63 ◽  
Author(s):  
Shao Hui Yin ◽  
Yu Wang ◽  
Takeo Shinmura ◽  
Yong Jian Zhu ◽  
Feng Jun Chen

This paper proposed a viewpoint to explain why vibration assistance may increase material removal rate (MRR) in vibration-assisted magnetic abrasive finishing process. A series of experiments on vibration-assisted finishing have been carried out. On the basis of these experiments, the finishing characteristics are represented summarily. It was shown that the increase in material rate is mainly due to an increase in material removal per unit working distance.


2009 ◽  
Vol 76-78 ◽  
pp. 246-251
Author(s):  
Shao Hui Yin ◽  
Yu Wang ◽  
Han Huang ◽  
Yong Jian Zhu ◽  
Yu Feng Fan ◽  
...  

This paper investigates the effect of horizontal vibration assistance on surface roughness in magnetic abrasive finishing, and the material removal mechanism associated. The experiments on vibration-assisted finishing have clearly indicated that the improvement of surface roughness is mainly attributed to the cross-cutting effect of abrasives.


2020 ◽  
Vol 38 (8A) ◽  
pp. 1137-1142
Author(s):  
Baqer A. Ahmed ◽  
Saad K. Shather ◽  
Wisam K. Hamdan

In this paper the Magnetic Abrasive Finishing (MAF) was utilized after Single Point Incremental Forming (SPIF) process as a combined finishing process. Firstly, the Single Point Incremental forming was form the truncated cone made from low carbon steel (1008-AISI) based on Z-level tool path then the magnetic abrasive finishing process was applied on the surface of the formed product. Box-Behnken design of experiment in Minitab 17 software was used in this study. The influences of different parameters (feed rate, machining step size, coil current and spindle speed) on change in Micro-Vickers hardness were studied. The maximum and minimum change in Micro-Vickers hardness that achieved from all the experiments were (40.4 and 1.1) respectively. The contribution percent of (feed rate, machining step size, coil current and spindle speed) were (7.1, 18.068, 17.376 and 37.894) % respectively. After MAF process all the micro surface cracks that generated on the workpiece surface was completely removed from the surface.


2020 ◽  
Vol 62 (2) ◽  
pp. 157-164 ◽  
Author(s):  
Kandhasamy Suganeswaran ◽  
Rathinasamy Parameshwaran ◽  
Thangamuthu Mohanraj ◽  
Balasubramaniyam Meenakshipriya

Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 81
Author(s):  
Yanhua Zou ◽  
Ryunosuke Satou ◽  
Ozora Yamazaki ◽  
Huijun Xie

High quality, highly efficient finishing processes are required for finishing difficult-to-machine materials. Magnetic abrasive finishing (MAF) process is a finishing method that can obtain a high accuracy surface using fine magnetic particles and abrasive particles, but has poor finishing efficiency. On the contrary, fixed abrasive polishing (FAP) is a polishing process can obtain high material removal efficiency but often cannot provide a high-quality surface at the nano-scale. Therefore, this work proposes a new finishing process, which combines the magnetic abrasive finishing process and the fixed abrasive polishing process (MAF-FAP). To verify the proposed methodology, a finishing device was developed and finishing experiments on alumina ceramic plates were performed. Furthermore, the mechanism of the MAF-FAP process was investigated. In addition, the influence of process parameters on finishing characteristics is discussed. According to the experimental results, this process can achieve high-efficiency finishing of brittle hard materials (alumina ceramics) and can obtain nano-scale surfaces. The surface roughness of the alumina ceramic plate is improved from 202.11 nm Ra to 3.67 nm Ra within 30 min.


Sign in / Sign up

Export Citation Format

Share Document