Research on the plastic flow characteristics of metal material in mechanical scratching

Author(s):  
Yanchun Ding ◽  
Guangfeng Shi ◽  
Hua Zhang
1966 ◽  
Vol 1 (5) ◽  
pp. 439-446 ◽  
Author(s):  
A N Bramley ◽  
P B Mellor

Work-hardening characteristics for sheet steel and aluminium have been obtained experimentally over a range of strain rates from 10−4 to 102/s. Use of the diaphragm test enables work-hardening characteristics to be obtained to much higher plastic strains than is possible in uniaxial tension. Results for killed steel show that the slope of the work-hardening characteristics decreases with increase in strain rate. Tentative extrapolation of the results suggests that if similar tests could be carried out at a strain rate of 104 then the work hardening characteristic would be that of an ideally plastic solid. In the case of aluminium the above phenomenon is not so marked and it is not possible to make even a tentative extrapolation to higher strain rates.


2013 ◽  
Vol 42 (9) ◽  
pp. 1779-1784 ◽  
Author(s):  
Chen Zhaoyun ◽  
Tong Rui ◽  
Dong Zichao

Author(s):  
Shigeki Hirasawa ◽  
Harsha Badarinarayan ◽  
Kazutaka Okamoto ◽  
Toshio Tomimura

Friction stir spot welding (FSSW) is a new metal-joining process, and a numerical simulation code to calculate optimal welding conditions is desired. In this paper, we analyzed temperature distribution and plastic flow during FSSW process by solving the elastic-plastic deformation equations using the particle method. Calculation results indicate that, temperature distribution is circler patterns and the temperature below the rotation tool is 300 °C at 0.7 s when the diameter of the tool is 8 mm and the rotation speed is 2500 rpm. The material of the metal plate near the outside of the tool protrudes to cause the burr. The calculation result is similar to our experimental result. Plastic flow pattern of material in the metal plate is obtained. The obtained complex flow pattern is important to mix metal material and the weld strength of FSSW. The length of the pin of the tool, the tool diameter, the tool rotation speed, and the tool plunge speed are important parameters for mixing of metal material. The mixing of metal material below the concave shoulder is strong.


Sign in / Sign up

Export Citation Format

Share Document