Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning

Author(s):  
Xiaoming Wang ◽  
Changhe Li ◽  
Yanbin Zhang ◽  
Zafar Said ◽  
Sujan Debnath ◽  
...  
Author(s):  
Jung Soo Nam ◽  
Pil-Ho Lee ◽  
Sang Won Lee

This paper presents two basic experimental studies of a micro-drilling process with nanofluid minimum quantity lubrication (MQL) in terms of machining and environmental characteristics. By using a miniaturized desktop machine tool system, a series of micro drilling experiments were conducted in the cases of dry, compressed air and nanofluid MQL. The experimental results imply that nanofluid MQL significantly reduces the adhesion of chips when compared with the cases of dry and compressed air micro-drilling. As a result, it is observed that the magnitudes of average drilling torque and thrust force are decreased and the tool life of micro drills is extended in the case of nanofluid MQL micro-drilling process. In addition, the empirical study on environmental characteristics of MQL micro-drilling process is conducted by measuring MQL oil mist with the oil sampling method. The results show that remaining MQL oil mist is tiny enough not to have a detrimental effect on human health.


Author(s):  
Dae Hoon Kim ◽  
Pil-Ho Lee ◽  
Jung Sub Kim ◽  
Hyungpil Moon ◽  
Sang Won Lee

This paper investigates the characteristics of micro end-milling process of titanium alloy (Ti-6AL-4V) using nanofluid minimum quantity lubrication (MQL). A series of micro end-milling experiments are conducted in the meso-scale machine tool system, and milling forces, burr formations, surface roughness, and tool wear are observed and analyzed according to varying feed per tooth and lubrication conditions. The experimental results show that MQL and nanofluid MQL with nanodiamond particles can be effective to reduce milling forces, burrs and surface roughness during micro end-milling of titanium alloy. In particular, it is demonstrated that smaller size of nanodiamond particles — 35 nm — can be more effective to decrease burrs and surface roughness in the case of nanofluid MQL micro end-milling.


Sign in / Sign up

Export Citation Format

Share Document