Numerical study of flow and thermal characteristics in titanium alloy milling with hybrid nanofluid minimum quantity lubrication and cryogenic nitrogen cooling

Author(s):  
Woo-Yul Kim ◽  
Santhosh Senguttuvan ◽  
Seong Hoon Kim ◽  
Sang Won Lee ◽  
Sung-Min Kim
Author(s):  
Dae Hoon Kim ◽  
Pil-Ho Lee ◽  
Jung Sub Kim ◽  
Hyungpil Moon ◽  
Sang Won Lee

This paper investigates the characteristics of micro end-milling process of titanium alloy (Ti-6AL-4V) using nanofluid minimum quantity lubrication (MQL). A series of micro end-milling experiments are conducted in the meso-scale machine tool system, and milling forces, burr formations, surface roughness, and tool wear are observed and analyzed according to varying feed per tooth and lubrication conditions. The experimental results show that MQL and nanofluid MQL with nanodiamond particles can be effective to reduce milling forces, burrs and surface roughness during micro end-milling of titanium alloy. In particular, it is demonstrated that smaller size of nanodiamond particles — 35 nm — can be more effective to decrease burrs and surface roughness in the case of nanofluid MQL micro end-milling.


Sign in / Sign up

Export Citation Format

Share Document