scholarly journals Acoustic emissions in directed energy deposition processes

Author(s):  
Tobias Hauser ◽  
Raven T. Reisch ◽  
Tobias Kamps ◽  
Alexander F. H. Kaplan ◽  
Joerg Volpp

AbstractAcoustic emissions in directed energy deposition processes such as wire arc additive manufacturing and directed energy deposition with laser beam/metal are investigated within this work, as many insights about the process can be gained from this. In both processes, experienced operators can hear whether a process is running stable or not. Therefore, different experiments for stable and unstable processes with common process anomalies were carried out, and the acoustic emissions as well as process camera images were captured. Thereby, it was found that stable processes show a consistent mean intensity in the acoustic emissions for both processes. For wire arc additive manufacturing, it was found that by the Mel spectrum, a specific spectrum adapted to human hearing, the occurrence of different process anomalies can be detected. The main acoustic source in wire arc additive manufacturing is the plasma expansion of the arc. The acoustic emissions and the occurring process anomalies are mainly correlating with the size of the arc because that is essentially the ionized volume leading to the air pressure which causes the acoustic emissions. For directed energy deposition with laser beam/metal, it was found that by the Mel spectrum, the occurrence of an unstable process can also be detected. The main acoustic emissions are created by the interaction between the powder and the laser beam because the powder particles create an air pressure through the expansion of the particles from the solid state to the liquid state when these particles are melted. These findings can be used to achieve an in situ quality assurance by an in-process analysis of the acoustic emissions.

2021 ◽  
Vol 27 (11) ◽  
pp. 37-42
Author(s):  
Himani Naesstroem ◽  
Frank Brueckner ◽  
Alexander F.H. Kaplan

Purpose This paper aims to gain an understanding of the behaviour of iron ore when melted by a laser beam in a continuous manner. This fundamental knowledge is essential to further develop additive manufacturing routes such as production of low cost parts and in-situ reduction of the ore during processing. Design/methodology/approach Blown powder directed energy deposition was used as the processing method. The process was observed through high-speed imaging, and computed tomography was used to analyse the specimens. Findings The experimental trials give preliminary results showing potential for the processability of iron ore for additive manufacturing. A large and stable melt pool is formed in spite of the inhomogeneous material used. Single and multilayer tracks could be deposited. Although smooth and even on the surface, the single layer tracks displayed porosity. In case of multilayered tracks, delamination from the substrate material and deformation can be seen. High-speed videos of the process reveal various process phenomena such as melting of ore powder during feeding, cloud formation, melt pool size, melt flow and spatter formation. Originality/value Very little literature is available that studies the possible use of ore in additive manufacturing. Although the process studied here is not industrially useable as is, it is a step towards processing cheap unprocessed material with a laser beam.


2021 ◽  
Vol 39 ◽  
pp. 101845
Author(s):  
J.P. Kelly ◽  
J.W. Elmer ◽  
F.J. Ryerson ◽  
J.R.I. Lee ◽  
J.J. Haslam

2019 ◽  
Vol 161 ◽  
pp. 86-94 ◽  
Author(s):  
James C. Haley ◽  
Baolong Zheng ◽  
Umberto Scipioni Bertoli ◽  
Alexander D. Dupuy ◽  
Julie M. Schoenung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document