scholarly journals A method based on circumferential strain distribution for roller path design in conventional spinning of thin-walled conical part with curved surface

Author(s):  
Yongdi Wang ◽  
Hongwei Li ◽  
Pengfei Gao ◽  
Mei Zhan ◽  
Xinggang Yan ◽  
...  
2021 ◽  
Author(s):  
Yongdi Wang ◽  
Hongwei Li ◽  
Pengfei Gao ◽  
Mei Zhan ◽  
Xinggang Yan ◽  
...  

Abstract Multi-pass conventional spinning is the preferable forming technology for the forming of thin-walled conical part with curved surface (TCPCS) in aerospace field. In multi-pass conventional spinning, the design of roller path is a critical problem due to its sensitive effect on the deformation mode and forming defect during spinning process. However, at present, the roller path is still mainly designed based on experience and trial-and-error, which seriously restricts the high-performance spinning of TCPCS. In this work, a new quantitative method based on circumferential strain distribution was developed for the roller path design in multi-pass conventional spinning of TCPCS. In this method, the total required circumferential strain for the forming of final TCPCS by conventional spinning was firstly determined. Then, the spinning passes number were obtained through dividing the total required circumferential strain by the ultimate circumferential strain producing the spinning instability ( ε θult ). As for the roller path profile in each pass, it is divided into two sections and determined respectively, i.e. the attaching mandrel section and the performing section. The attaching mandrel section presents the same profile of mandrel. The profile of preforming section is determined point-by-point by distributing the rest of circumferential strain { ε θni } to produce the final TCPCS. The point-by-point distributed circumferential strain is half of the { ε θni } at the initial stage until reaches the half of ε θult , then it will keep the half of ε θult to the end. The proposed new method of roller path design was validated by finite element simulation, where well spinning stability, wall thickness distribution and roundness were obtained. This method provides a quantitative, high-efficient and universal way for the roller path design in conventional spinning of TCPCS.


2019 ◽  
Vol 265 ◽  
pp. 44-55 ◽  
Author(s):  
S.W. Chen ◽  
P.F. Gao ◽  
M. Zhan ◽  
F. Ma ◽  
H.R. Zhang ◽  
...  

2011 ◽  
Vol 299-300 ◽  
pp. 810-815 ◽  
Author(s):  
Chun Wang ◽  
Xuan Ming Zhang ◽  
Xiao Wang

The large sandwich structure composed of thin-walled aluminum alloy panels, and variable thickness of honeycomb or Polymethacrylimide (PMI) foam core is usually manufactured by pre-bonded forming process, that is pre-forming panels and sandwich core, and then curing adhesive them to be sandwich structure. Welding process of large thin-walled panel causes the panel surface to be irregular and have greater errors relative to the design surface. Simply CNC machining the sandwich core according to the design surface cannot guarantee an exact match sandwich core consistent with the panels. The actual topography of the panels must be scanned. It is proposed that the use of a new hand-held laser scanner, Handyscan to scan large thin-walled curved surface parts, of Geomagic software to handle the acquired point clouds and construct the surface model.


2019 ◽  
Vol 224 ◽  
pp. 05009
Author(s):  
Xiangjing Kong ◽  
Zishan Ding ◽  
Lijun Xu ◽  
Lijian Zhu ◽  
Jian Zhang ◽  
...  

With the increasing application of curved thin-walled parts, the evaluation and control of curved surface residual stress in milling are becoming increasingly demanding. However, effects of milling parameters on distribution of residual stress remains a major challenge in the present aerospace research areas. In this paper, , impacts of milling parameters on curved surface residual stress have been investigated in a series of residual stress experiments and simulations. It is found that the residual stress can be lowered by increasing milling speed and tool radius within a reasonable range. The superposition of curved surface residual stress under two machining conditions have been analyzed using the milling simulation model. It has been found that the curved surface residual stress induced by the subsequent cutting will be superimposed on the curved surface residual stress induced by the previous cutting and that the superposition rates of residual stress induced by up milling are larger than down milling.


2016 ◽  
Vol 684 ◽  
pp. 253-262 ◽  
Author(s):  
E.G. Demyanenko ◽  
I.P. Popov

In this article the flanging method of thin-walled ring blanks using the elastic punch and rigid die scheme is investigated. Presence of a cylindrical portion near the larger edge and a flat area at the side of the blank hole is mandatory. Such conditions allow producing conical parts with minimal thickness variation by altering height of the cylindrical portion. Conducted experimental studies showed that the minimal thickness variation values are not exceeding 16% for different materials and relative thicknesses less than 0,01.


2012 ◽  
Vol 6 (5) ◽  
pp. 638-647 ◽  
Author(s):  
Yusuke Koike ◽  
◽  
Atsushi Matsubara ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
...  

Vibrations of a tool or workpiece during cutting operations shorten tool life and causes unwanted surface roughness. In this report, we propose an algorithm for determining the sequence of material removal, tool orientation, and feed directions, an algorithm minimizes workpiece displacements by considering workpiece stiffness and cutting force. In this research, the cutting path consists of the material removal sequence, tool orientation and feed directions. The material removal sequence changes the workpiece compliancematrix at the cutting points, and the feed directions and tool orientation change the direction of the cutting force. In our algorithm, workpiece displacements are reduced by changing the material removal sequence and applying the cutting force in the direction of higher workpiece stiffness. A numerical example demonstrates how the algorithm obtains appropriate cutting paths to mill a cantilever form. In the numerical example, three optimized cutting paths are compared with an unoptimized cutting path, a path used by an expert and based on the expert’s personal experience, to machine a low-stiffness workpiece. The obtained material removal sequence of the minimax compliance path is almost the same as that of the unoptimized cutting path. Workpiece displacements at the cutting point of three optimized cutting paths are approximately 10% smaller than those of the unoptimized cutting path. The minimum displacement path is the best of these three optimized cutting paths because fluctuations in workpiece displacements at cutting point are the smallest. These optimized cutting paths show the cutting path strategy as a rough cutting path for machining the thin-walled cantilever.


1965 ◽  
Vol 180 (1) ◽  
pp. 93-110 ◽  
Author(s):  
K. Baines ◽  
J. L. Duncan ◽  
W. Johnson

Some results of an experimental and theoretical investigation of the dynamic forming of thin-walled tubes and flat circular diaphragms by the electromagnetic metal forming process are given. The paper is divided into two parts. Part 1—The magnetic forming process is described and its use as a production technique is discussed. The process is a high strain-rate technique suitable for forming relatively light gauge material; the forces causing deformation result from the interaction of the current in specially constructed coils and the resulting eddy currents induced in the workpiece. The source of energy is a capacitor bank which can be discharged rapidly through the work-coil. The experiments described were performed using a specially constructed 16 kj discharge unit. The method of constructing work-coils and the failures experienced with these coils in service are described. Thin-walled copper and aluminium tubes were expanded by means of internal solenoidal work-coils of various lengths. The strain distribution and forming efficiency is presented, together with results showing the variation of process efficiency with changes in the primary circuit parameters. The strain distribution for a circular aluminium alloy diaphragm bulged by means of a flat spiral coil is given. Typical primary current waveforms are given and the changes in waveform and discharge current frequency due to different workpiece materials and changes in primary circuit parameters are indicated. Part 2—An attempt is made to determine theoretically the forces acting on one of the aluminium alloy tubes expanded and described in the work of Part 1. The currents in the work-coil and workpiece are calculated using the experimentally determined current waveform and the calculated value of workpiece inductance. A rudimentary method is developed for relating pressure on the workpiece to the primary and secondary currents and, using this, the radial motion of the tube is predicted. Although the analysis involves the use of a number of simplifications and approximations, the theoretical results obtained are of the same magnitude as would be expected by reference to other high-rate forming processes.


Sign in / Sign up

Export Citation Format

Share Document