scholarly journals Effects of Milling Parameters on Distribution of Residual Stress During the Milling of Curved Thin-Walled Parts

2019 ◽  
Vol 224 ◽  
pp. 05009
Author(s):  
Xiangjing Kong ◽  
Zishan Ding ◽  
Lijun Xu ◽  
Lijian Zhu ◽  
Jian Zhang ◽  
...  

With the increasing application of curved thin-walled parts, the evaluation and control of curved surface residual stress in milling are becoming increasingly demanding. However, effects of milling parameters on distribution of residual stress remains a major challenge in the present aerospace research areas. In this paper, , impacts of milling parameters on curved surface residual stress have been investigated in a series of residual stress experiments and simulations. It is found that the residual stress can be lowered by increasing milling speed and tool radius within a reasonable range. The superposition of curved surface residual stress under two machining conditions have been analyzed using the milling simulation model. It has been found that the curved surface residual stress induced by the subsequent cutting will be superimposed on the curved surface residual stress induced by the previous cutting and that the superposition rates of residual stress induced by up milling are larger than down milling.

2009 ◽  
Vol 407-408 ◽  
pp. 718-722
Author(s):  
Hong Feng Wang ◽  
Dun Wen Zuo ◽  
Li Tao Wang ◽  
Hong Miao ◽  
Hong Jun Wang

The mathematic model was established between finished surface residual stress and milling parameters by orthogonal regression testing. The rationality of the model was certified by FEM and test. The simulation hypothesis and process were verified by the model. The test showed that the model and FEM were feasible.


2010 ◽  
Vol 44-47 ◽  
pp. 2842-2846
Author(s):  
Xiao Hui Jiang ◽  
Bei Zhi Li ◽  
Jian Guo Yang ◽  
He Long Wu

In this paper, with the milling processing of aluminum-alloy thin-walled parts as the research object, using software AdvantEdge, a milling simulation model is developed to study milling parameters affect on the cutting force, heat and catenation. It is found that by adjusting the ratio of milling parameters, the effects of cutting forces and heat can turn to the favorable direction of workpiece. In addition, we combine numerical simulation with experiments to explore the law of optimization of process parameters. It is discovered that the method of improving the milling speed and reducing the cutting depth properly can ensure the milling efficiency and the quality of the workpiece, providing a scientific insight for achieving high-quality, low-cost and efficient thin-walled parts manufacturing.


2021 ◽  
Vol 11 (13) ◽  
pp. 5881
Author(s):  
Shouhua Yi ◽  
Yunxin Wu ◽  
Hai Gong ◽  
Chenxi Peng ◽  
Yongbiao He

Aeronautical thin-walled frame workpieces are usually obtained by milling aluminum alloy plates. The residual stress within the workpiece has a significant influence on the deformation due to the relatively low rigidity of the workpiece. To accurately predict the milling-induced residual stress, this paper describes an orthogonal experiment for milling 7075 aluminum alloy plates. The milling-induced residual stress at different surface depths of the workpiece, without initial stress, is obtained. The influence of the milling parameters on the residual stress is revealed. The parameters include milling speed, feed per tooth, milling width, and cutting depth. The experimental results show that the residual stress depth in the workpiece surface is within 0.12 mm, and the residual stress depth of the end milling is slightly greater than that of the side milling. The calculation models of residual stress and milling parameters for two milling methods are formulated based on regression analysis, and the sensitivity coefficients of parameters to residual stress are calculated. The residual stress prediction model for milling 7075 aluminum alloy plates is proposed based on a back-propagation neural network and genetic algorithm. The findings suggest that the proposed model has a high accuracy, and the prediction error is between 0–14 MPa. It provides basic data for machining deformation prediction of aluminum alloy thin-walled workpieces, which has significant application potential.


2014 ◽  
Vol 526 ◽  
pp. 3-8 ◽  
Author(s):  
Wei Wei Liu ◽  
Dong Fang Wang ◽  
Feng Li ◽  
Hao Chen ◽  
Cheng Zhou Wang ◽  
...  

In order to control surface residual stress in milling aviation stainless steel, orthogonal experiments were conducted to investigate the effects of milling parameters on surface residual stress in milling of 1Cr11Ni2W2MoV. The empirical formula of surface residual stress was established to analyze the sensitivity of surface residual stress on milling parameters. The milling parameters stability region and instability region were acquired. Using the extreme difference analysis method, the optimum selection of the milling parameters interval was proceeded. The results show that residual stress along X direction is most sensitive to the feed per tooth, residual stress along Y direction is most sensitive to the milling speed. The optimum milling speed ranges from 25m/min to 40m/min, the optimum milling depth ranges from 0.4mm to 0.45mm, and the optimum feed per tooth ranges from 0.06 mm/z to 0.08mm/z, surface residual stress can be effectively controlled.


2012 ◽  
Vol 426 ◽  
pp. 7-10 ◽  
Author(s):  
Yu Mei Liu ◽  
Z. L. Jiang ◽  
Z. Li

The residual stress is one important factor causing deformation and distortion. A mathematical model is presented. It predicts the surface residual-stress caused by end-milling. Response Surface Methodology (RSM) with the Takushi method is used to design experiment. The variance analysis (ANOVA) is conducted to determine the adequacy of the model. It is shown that the model offering good correlation between the experimental and predicted results, is useful in selecting suitable cutting parameters for milling aluminium alloy 6061.


Sign in / Sign up

Export Citation Format

Share Document