NC Machining of Trimmed Surfaces Maintaining Adjacent-Surfaces Integrity

2000 ◽  
Vol 16 (3) ◽  
pp. 196-204 ◽  
Author(s):  
A. Hatna ◽  
R. J. Grieve ◽  
P. Broomhead
Author(s):  
Kun Wei ◽  
Yuhan Zhang ◽  
Weigang Zheng
Keyword(s):  

1992 ◽  
Vol 24 (8) ◽  
pp. 437-444 ◽  
Author(s):  
X. Sheng ◽  
B.E. Hirsch

2014 ◽  
Vol 909 ◽  
pp. 342-345
Author(s):  
Xin Juan Shang

The NC Teaching Plotter is designed for the practice teaching needs of NC machining, In order to improve current existing practice teaching environment of "many student, less equipment". It explains the NC concept with concise way and demonstrates NC thought by the intuitive operation.In this paper, the design of NC teaching plotter makes interpolation motion between pen and table based on NC program in accordance with the requirement made by user, to draw the graphics by moving the magnet control brush painting through the single chip digital control and the two stepper motor control X, Y two axes feed. The NC teaching plotter which demonstrates more clearly and directly the numerical control idea has high practical value for teaching practice.


2004 ◽  
Vol 23 (5-6) ◽  
pp. 429-435 ◽  
Author(s):  
Y. Sijie ◽  
Z. Yunfei ◽  
P. Fangyu ◽  
L. Xide

2009 ◽  
Vol 419-420 ◽  
pp. 333-336
Author(s):  
Jeng Nan Lee ◽  
Chih Wen Luo ◽  
Hung Shyong Chen

To obtain the flexibility of choice of cutting tool and to compensate the wear of the cutting tool, this paper presents an interference-free toolpath generating method for multi-axis machining of a cylindrical cam. The notion of the proposed method is that the cutting tool is confined within the meshing element and the motion of the cutting tool follows the meshing element so that collision problem can be avoided. Based on the envelope theory, homogeneous coordinate transformation and differential geometry, the cutter location for multi-axis NC machining using cylindrical-end mill is derived and the cutting path sequences with the minimum lead in and lead out are planned. The cutting simulations with solid model are performed to verify the proposed toolpath generation method. It is also verified through the trial cut with model material on a five-axis machine tool.


Author(s):  
Shao-ying Ren ◽  
Yan-zhong Wang ◽  
Yuan Li

This article presents a method of design, manufacturing, and measuring S-gear. S-gear is a kind of gear whose tooth profile is an S-shaped curve. The sine (cosine) gear, cycloid gear, polynomial gear, and circular arc gear are all S-gears in essence. In the S-gear transmission, the concave surface of one gear and the convex surface of the other gear contact each other. Therefore, the power transmitted by S-gear is much larger than that of the convex-convex-contact involute gear. Some scholars have studied the characteristics of S-gear, but few have explored its manufacturing. In this article, the Numerical Control (NC) machining technology of S-gear is studied in detail for its industrial application. The polynomial curve is used to construct the tooth profile of the S-gear based on the Gear Meshing Theory. The mathematical model of polynomial S-gear is established, by which involute gear can be represented as a special S-gear. The steps of generating NC codes are described. Then, the S-gear sample is processed with an NC machining center. Finally, the sample is measured with a Coordinate Measuring Machine (CMM), and the measurement results show that the accuracy of the S-gear processed by the NC machining center reaches ISO6. This research provides a feasible approach for the design, manufacturing, and measuring of S-gear.


1999 ◽  
Vol 122 (3) ◽  
pp. 556-561 ◽  
Author(s):  
X. Yan ◽  
K. Shirase ◽  
M. Hirao ◽  
T. Yasui

The productivity of machining centers is influenced inherently by the quality of NC programs. To evaluate productivity, first an effective feedrate factor and a productivity evaluation factor are proposed. It has been found that in high-speed machining, these two factors depend on a kinematic factor which is a function of (1) command feedrate, (2) average per-block travel of the tool, (3) moving vectorial variation of the tool, and (4) ac/deceleration or time constants. Then an NC program simulator has been developed to evaluate productivity. With the simulator, the machining time can be calculated accurately and the cutting conditions can be extracted. Finally, three NC programs were implemented on high-speed machining centers and analyzed by the simulator. It was found that in mold and die machining, the productivity can be improved by increasing the acceleration and average travel and reducing the vectorial variation of the tool rather than the command feedrate. [S1087-1357(00)01303-4]


Sign in / Sign up

Export Citation Format

Share Document