gear contact
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 29)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 26 (4) ◽  
pp. 325-336
Author(s):  
Bo Xu ◽  
Yu Qiu ◽  
Bifeng Yin ◽  
Xijun Hua ◽  
Hang Du

The tooth profile crowning modification was applied onto paired gears for reducing the noise of an electric vehicle reducer. The simulated gear contact spots are compared before and after modification, and are validated by a contact spot experiment. Based on the rigid-flexible coupling model of the gear transmission system, the time-varying meshing stiffness, time-varying meshing force, and the vibration and noise of the gear pairs with different modified gears obtained by simulating calculation are analyzed. The results showed that the selection of modified gear has a great influence on the modification effect. In the way of tooth profile crowning, it is not advisable to modify the pinion independently, as it may increase the frequency and degree of meshing impact between the helical gear pair, making the transmission become less smooth; while modifying the wheel and pinion at the same time can effectively reduce the time-varying meshing stiffness and force, and the vibration and noise. Also, the optimized gear modification scheme is verified by the noise test.


2021 ◽  
Author(s):  
Lantao Yang ◽  
Qiang Zeng ◽  
Haishi Yang ◽  
Liming Wang ◽  
Guorong Long ◽  
...  

Abstract Shaft misalignment will change the gear contact state, and then leads to the variation of the internal stiffness excitation of the gear pair, and finally the dynamic characteristics of the gear system will be affected. However, the influence of the gear contact state change on stiffness is usually neglected in the traditional stiffness calculation model for misaligned gears, and the underlying influence mechanism of the gear contact state changes aroused by the shaft misalignment on the dynamic characteristics of gear system is still unclear. To address these shortcomings, traditional loaded tooth contact analysis (LTCA) model is improved with the influences of fillet foundation deformation taken into consideration. Combined with the improved LTCA model, a new mesh stiffness calculation model for misaligned gear considering the tooth contact state is proposed, and then the effects of the contact state changes aroused by the shaft misalignment on the mesh stiffness excitation are studied. Moreover, a dynamic model of misaligned gear system with 8 degree of freedom (DOF) is established, and the dynamic characteristics of the system are simulated and finally verified by experiment. The results show that the proposed model can be used to evaluate the dynamic characteristics of the misaligned gear system with the change of gear tooth contact state taken into consideration. This study provides a theoretical method for the evaluation and identification of the shaft misalignment error.


2021 ◽  
Vol 69 (4) ◽  
Author(s):  
Reza Bayat ◽  
Arto Lehtovaara

Abstract In this paper, an experimental simulation method was used for evaluating the tribofilm formation in rolling/sliding contact at different points in the line of action. A ball-on-disc test method was employed by which the pressure and slide to roll ratio of gear contact could be simulated. In order to reach a general conclusion, four different oils and two surface roughness were involved in the experiments. The tribofilm evolution was captured using spacer layer interferometry method, and the correlation of tribofilm with the location at the line of action was studied. Results showed that there is a threshold pressure for the tribofilm formation around which the tribofilm growth rate is maximum. Above this threshold pressure, the tribofilm formation is not stable, and the wear is dominant. Below this threshold pressure, the tribofilm growth rate rises by increasing the pressure and the gear contact is safely protected by a stable tribofilm. Graphic Abstract


2021 ◽  
Vol 67 (7-8) ◽  
pp. 352-362
Author(s):  
Yang-zhi Chen ◽  
Chao He ◽  
Yue-ling Lyu

In this paper, a novel line gear mechanism is proposed; it is called the variable shaft angle line gear mechanism (VSALGM). VSALGM has two rotational degrees of freedom, one is the rotation of the two gears with a constant transmission ratio, and the other is the relative swing of the two gears shafts. First, a novel contact model of VSALGM composed of one driven contact curve and one driving line teeth working surface (DLTWS) was proposed. With the concept, the basic design equations for VSALGM were derived on the basis of the space curve meshing theory of line gear. Moreover, the design criterion of pressure angle for VSALGM was analysed and proposed on the basis of the contact model. A basic design method for VSALGM was thus developed. A design example was given, and prototypes were manufactured using three-dimensional (3D) printing. Kinematic experiments and gear contact spot testing were carried out on a self-made kinematic test rig by the prototypes. The results show that the VSALGM designed in this paper can achieve a continuous, smooth and stable meshing transmission while the shaft angle is continuously changed within its setting range.


Author(s):  
Chao He ◽  
Yangzhi Chen ◽  
Weijia Lin ◽  
Yueling Lyu

For gear pairs with centre-distance separability, transmission ratios are not affected by centre distance error. Based on space curve meshing theory, the centre distance separability of a line gear pair was studied. A novel line gear pair called the separable and pure rolling parallel shaft line gear pair (SPRPSLG) was proposed, which has centre-distance separability characteristics and pure rolling transmission. The basic design theory of the SPRPSLG pair was established. A design method of the SPRPSLG pair with an eccentric arc tooth profile was given. An SPRPSLG pair example was designed and manufactured using the form milling method. Kinematic experiments and meshing efficiency experiments were conducted. Gear contact spot testing and gear contact simulation analysis were carried out. The SPRPSLG pair was shown to have centre distance separability, which provides a further theoretical basis for the popularization and application of line gears.


Author(s):  
Philipp Roth ◽  
Michael Hein ◽  
Karsten Stahl

AbstractWorm gears with wheels of harder materials, such as cast iron or steel, are often prone to the damage type scuffing, which can cause a sudden and rapid failure of the gear box. Contact temperature is a suitable criterion to determine the scuffing safety for other types of gears. However, for worm gears, a scuffing load capacity calculation is not available at the moment. This paper presents a numerical temperature simulation for worm gears that considers transient multidimensional heat transfer and local frictional loading due to the contact. Based on the results of this simulation, this paper derives a simplified calculation of worm gear contact temperatures. The calculation only contains input parameters that are already part of current standards. Its result, the contact temperature of worm gears, can be used to rate the scuffing load capacity.


2021 ◽  
Author(s):  
Tao Zhang ◽  
Zhifeng Liu ◽  
Congbin Yang ◽  
Yang Wang ◽  
Qianqian Liu

Abstract Contact stiffness and backlash model of harmonic reducer is related to robot’s positioning accuracy and vibration characteristics. Harmonic reducer tooth pair height is typically less than 1 mm. Thus, backlash and contact stiffness measurement and modeling are relatively complex. In this paper, contact stiffness and backlash model is proposed by establishing a relationship between fractal parameters and tooth contact load. Non-contact optical profiler and RMS method are combined to obtain fractal roughness parameters of real machined tooth surface. Finally, the effect of rough tooth surface and contact force fractal parameters on contact stiffness and gear backlash is studied. The results indicate that surface topography parameters and contact force have significant effects on contact stiffness and backlash. By increasing the fractal dimension, a decrease of gear backlash and contact stiffness is observed. However, the opposite is true for the fractal roughness parameter. Lastly, an increase in contact force improves the contact stiffness.


Author(s):  
Jakab Molnar ◽  
Attila Csoban ◽  
Peter T. Zwierczyk

The main goal of this research was to study the influence of involute spur gear tip relief on the contact stress at the engagement meshing point (the begining point of the line of contact A). Different predefined involute spur gears and modification parameters (amount and length of modification) were already available from previous studies (Schmidt 2019). In this study, both the drive and the driven gear has tip relief. The modification of the gear profile was achieved through the modification of the gear rack cutter’s profile. This way the profil modification of the gear profiles are generated during the gear generation (gear planning) process. The gears have been nitrided, so after the gear manufacturing process, the heat treatment did not defrom the modified gear profile. The gear modifications were generated in a CAD system, and the calculations were made with FEM. The results show that the tip relief influences the magnitude of the gear contact stress at the first meshig point. With the use of tip relief modification, the contact stress of the meshing gears can be reduced at the beginning of the meshing line.


Author(s):  
Ye Zhou ◽  
Caichao Zhu ◽  
Huaiju Liu ◽  
Houyi Bai ◽  
Xiaona Xu

Gear contact fatigue is becoming a primary limitation for the growing demand of power density and service life in gear-driven equipment. The unchecked surface fatigue crack could further cause premature failure and put a serious risk to the safety and reliability of mechanical systems. In this work, an attempt is made to investigate the effects of rolling-sliding and mild wear on contact fatigue behavior. A comprehensive contact model is developed to capture the variation instantaneous pressure and stress field is calculated with the transient mixed EHL approach. Rolling-sliding contact is simulated with the time-varying roughness topography updated by Archard wear equation. The stress cycles are extracted and the relative contact fatigue life is obtained by using Zaretsky criterion. Results suggest that in rolling-sliding contact the contact fatigue life is obviously lower compared with pure rolling. The increases in the number and amplitude of stress micro-cycles is found to be the main contributors to the reduction of fatigue life. Mild wear tends to smooth the surface, subsequently mitigates the stress concentration and reduces stress cycles, then decrease the risk of surface contact fatigue.


Sign in / Sign up

Export Citation Format

Share Document