Comparative Evaluations of Buffer Allocation Strategies in a Serial Production Line

2002 ◽  
Vol 19 (11) ◽  
pp. 789-800 ◽  
Author(s):  
F. T. S. Chan ◽  
E. Y. H. Ng
Author(s):  
Cheng Zhu ◽  
Tian Yu ◽  
Qing Chang ◽  
Jorge Arinez

Abstract In a multistage serial production line, products with defect can be repaired or reworked to ensure high product quality. This paper studies a multistage serial manufacturing system with quality rework loops. Rework is the activity to repair or repeat the work on the defect parts during manufacturing processes, and it adds to cost and cycle time. This paper introduces an event-based data-enabled mathematical model for a stochastic production line with quality rework loops. The system performance properties are analyzed and permanent production loss due to quality rework loops is identified. The mathematical model and system performance identification methodology are studied analytically through numerical case studies.


Author(s):  
Zalinda Othman ◽  
Shahrul Kamaruddin ◽  
Mohd. Shihabudin Ismail

Artikel ini membincangkan peruntukan penampan optimum untuk talian pengeluaran unpaced yang pendek dan boleh diharap (tiada mesin rosak). Parameter utama yang mempengaruhi talian dalam kajian ini adalah min masa pemprosesan (μ) dan pekali variasinya (Cv). Lapan taburan min masa pemprosesan telah dikaji. Setiap taburan dipadankan dengan 15 konfigurasi peruntukan penampan. Kaedah simulasi digunakan bagi menganggar kadar keluaran talian untuk setiap kes. Keputusan kajian menunjukkan peruntukan penampan tertentu mempengaruhi kadar keluaran talian. Bagi talian yang boleh diharap dan min seimbang, peruntukan penampan yang optima adalah dengan mengagihkan bilangan penampan secara sama rata ke setiap slot penampan. Jika penampan tambahan diperlukan selepas agihan dilakukan, letakkan penampan tambahan tersebut pada slot penampan yang di tengah. Manakala bentuk peruntukan penampan yang baik bagi talian yang mempunyai min tidak seimbang (dengan anggapan setiap stesen mempunyai Cv tetap dan boleh diharap) ialah mengikut bentuk taburan min masa pemprosesan talian tersebut. Kata kunci: Talian pengeluaran unpaced, min tidak seimbang, peruntukan penampan optima, talian seimbang, talian pengeluaran unpaced boleh diharap This article discusses an optimal buffer allocation for short unpaced production line and it is assumed reliable (no machines breakdown). The main parameters that affect the line are mean processing time (μ) and its coefficient of variation (Cv). Eight different mean processing time distributions were studied. Each distribution was matched with 15 different buffer allocations. Simulation method was used to estimate the line throughput rate. The results showed that the allocation of buffers affect the throughput rate. For a reliable and balanced line, the optimum buffer allocation is by equally distributing the number of buffers to each buffer slot. In the case of an extra buffer is needed after equally distribution, it is placed at the center buffer slot. Meanwhile, the best buffer allocation shape for a line with unbalanced mean (with the assumption that each station is having fixed Cv and is reliable) follows the shape of the mean processing times of that line. Key words: Unpaced production line, unbalanced mean, optimal buffer allocation, balanced line, reliable unpaced production line


2014 ◽  
Vol 11 (3) ◽  
pp. 789-797 ◽  
Author(s):  
Michael P. Brundage ◽  
Qing Chang ◽  
Yang Li ◽  
Guoxian Xiao ◽  
Jorge Arinez

1984 ◽  
Vol 4 (4) ◽  
pp. 285-295 ◽  
Author(s):  
Takshing P. Yum ◽  
C. Dou

Author(s):  
Peng Yang ◽  
Zilong Zhang ◽  
Bingling Cai ◽  
Peng Li ◽  
Yuegang Tao

2012 ◽  
Vol 576 ◽  
pp. 700-704 ◽  
Author(s):  
Hartini Mustafa ◽  
Ahmad Razlan Yusoff ◽  
M. Yusoff Ismail

Assembly line balancing is assumed to have fixed task within specified task time during the initial stage of the mass production. The problem of current case study of this assembly line was the production line cannot meet the expected output plan with imbalance station cycle time. In this paper, productivity study and line balancing is applied to improve production line of GGMG & CALICO. The desired cycle time defined using the Standard Time Data (STD) which required the person to perform assign task till completion by defining the performance rating of person. The proposed solution proved by the implementation analysis conducted in the research. The results showed that the productivity of production line which is tremendously increased within 50% after implementation. There are six factors identified during the study which are bottleneck stations, workpiece flow, line layout, ergonomic, resource assignment and buffer allocation.


Author(s):  
Yang Li ◽  
Qing Chang ◽  
Michael P. Brundage ◽  
Guoxian Xiao ◽  
Stephan Biller

Standalone throughput (SAT) of a single station is one of the most widely used performance indexes in industry due to its clear definition, ease of evaluation and the ability to provide a guidance for continuous improvement in production systems. A complex multistage manufacturing system is typically segmented into several subsystems for efficient local management. It is important to evaluate performance of each subsystem to improve overall system productivity. However, the definition of standalone throughput of a production subsystem is not as clear as for a single station in current literatures or in practice, not to say an effective evaluation method. This paper deals with the standalone throughput of a serial production line segment. The definition and implication of standalone throughput of a line segment is discussed. A data driven method is developed based on online production data and is proved analytically under a practical assumption. In addition, the method is verified through simulation case studies to be an accurate and fast estimation of the standalone throughput of a production line segment.


2001 ◽  
Vol 7 (6) ◽  
pp. 543-578 ◽  
Author(s):  
S.-Y. Chiang ◽  
C.-T. Kuo ◽  
S. M. Meerkov

The bottleneck of a production line is a machine that impedes the system performance in the strongest manner. In production lines with the so-called Markovian model of machine reliability, bottlenecks with respect to the downtime, uptime, and the cycle time of the machines can be introduced. The two former have been addressed in recent publications [1] and [2]. The latter is investigated in this paper. Specifically, using a novel aggregation procedure for performance analysis of production lines with Markovian machines having different cycle time, we develop a method for c-bottleneck identification and apply it in a case study to a camshaft production line at an automotive engine plant.


Sign in / Sign up

Export Citation Format

Share Document