A reference station-based GNSS computing mode to support unified precise point positioning and real-time kinematic services

2013 ◽  
Vol 87 (10-12) ◽  
pp. 945-960 ◽  
Author(s):  
Yanming Feng ◽  
Shengfeng Gu ◽  
Chuang Shi ◽  
Chris Rizos
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Tamer Baybura ◽  
İbrahim Tiryakioğlu ◽  
Mehmet Ali Uğur ◽  
Halil İbrahim Solak ◽  
Şeyma Şafak

Real-time kinematic (RTK) technique is important for mapping applications requiring short measure time, the distance between rover and base station, and high accuracy. There are several RTK methods used today such as the traditional RTK, long base RTK (LBRTK), network RTK (NRTK), and precise point positioning RTK (PPP-RTK). NRTK and LBRTK are popular with the advantage of the distance, the time, and accuracy. In the present study, the NRTK and LBRTK measurements were compared in terms of accuracy and distance in a test network with 6 sites that was established between 5 and 60 km. Repetitive NRTK and LBRTK measurements were performed on 6 different days in 2015-2017-2018 and additionally 4 campaigns of repetitive static measurements were carried out in this test network. The results of NRTK and LBRTK methods were examined and compared with all relevant aspects by considering the results of the static measurements as real coordinates. The study results showed that the LBRTK and NRTK methods yielded similar results at base lengths up to 40 km with the differences less than 3 cm horizontally and 4 cm vertically.


2015 ◽  
Vol 9 (2) ◽  
Author(s):  
Javier Tegedor ◽  
Xianglin Liu ◽  
Ole Ørpen ◽  
Niels Treffers ◽  
Matthew Goode ◽  
...  

AbstractIn order to achieve high-accuracy positioning, either Real-Time Kinematic (RTK) or Precise Point Positioning (PPP) techniques can be used. While RTK normally delivers higher accuracy with shorter convergence times, PPP has been an attractive technology for maritime applications, as it delivers uniform positioning performance without the direct need of a nearby reference station. Traditional PPP has been based on ambiguity-­float solutions using GPS and Glonass constellations. However, the addition of new satellite systems, such as Galileo and BeiDou, and the possibility of fixing integer carrier-phase ambiguities (PPP-AR) allow to increase PPP accuracy. In this article, a performance assessment has been done between RTK, PPP and PPP-AR, using GNSS data collected from two antennas installed on a ferry navigating in Oslo (Norway). RTK solutions have been generated using short, medium and long baselines (up to 290 km). For the generation of PPP-AR solutions, Uncalibrated Hardware Delays (UHDs) for GPS, Galileo and BeiDou have been estimated using reference stations in Oslo and Onsala. The performance of RTK and multi-­constellation PPP and PPP-AR are presented.


Measurement ◽  
2020 ◽  
Vol 166 ◽  
pp. 108231 ◽  
Author(s):  
Xingwang Zhao ◽  
Yulong Ge ◽  
Fuyang Ke ◽  
Chao Liu ◽  
Fangchao Li

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2593 ◽  
Author(s):  
Abdelsatar Elmezayen ◽  
Ahmed El-Rabbany

The release of the world’s first dual-frequency GPS/Galileo smartphone, Xiaomi mi 8, in 2018 provides an opportunity for high-precision positioning using ultra low-cost sensors. In this research, the GNSS precise point positioning (PPP) accuracy of the Xiaomi mi 8 smartphone is tested in post-processing and real-time modes. Raw dual-frequency observations are collected over two different time windows from both of the Xiaomi mi 8 smartphone and a Trimble R9 geodetic-quality GNSS receiver using a short baseline, due to the lack of a nearby reference station to the observation site. The data sets are first processed in differential modes using Trimble business center (TBC) software in order to provide the reference positioning solution for both of the geodetic receiver and the smartphone. An in-house PPP software is then used to process the collected data in both of post-processing and real-time modes. Precise ephemeris obtained from the multi-GNSS experiment (MGEX) is used for post-processing PPP, while the new NAVCAST real-time GNSS service, Germany, is used for real-time PPP. Additionally, the real-time PPP solution is assessed in both of static and kinematic modes. It is shown that the dual-frequency GNSS smartphone is capable of achieving decimeter-level positioning accuracy, in both of post-processing and real-time PPP modes, respectively. Meter-level positioning accuracy is achieved in the kinematic mode.


2021 ◽  
Vol 13 (7) ◽  
pp. 1406
Author(s):  
Gino Dardanelli ◽  
Antonino Maltese ◽  
Claudia Pipitone ◽  
Alessandro Pisciotta ◽  
Mauro Lo Brutto

Worldwide, the determination of the coordinates from a Global Navigation Satellite System (GNSS) survey (in Network Real Time Kinematic, Precise Point Positioning, or static mode) has been analysed in several scientific and technical applications. Many of those have been carried out to compare Precise Point Positioning (PPP), Network Real Time Kinematic (NRTK), and static modes’ solutions, usually, using the latter as the true or the most plausible solution. This approach is not always possible as the static mode solution depends on several parameters (baseline length, acquisition time, ionospheric, and tropospheric models, etc.) that must be considered to evaluate the accuracy of the method. This work aims to show the comparison among the GNSS survey methods mentioned above, using some benchmark points. The tests were carried out by comparing the survey methods in pairs to check their solutions congruence. The NRTK and the static solutions refer to a local GNSS CORS network’s analysis. The NRTK positioning has been obtained with different methods (VRS, FKP, NEA) and the PPP solution has been calculated with two different software (RTKLIB and CSRS-PPP). A statistical approach has been performed to check if the distribution frequencies of the coordinate’s residual belong to the normal distribution, for all pairs analysed. The results show that the hypothesis of a normal distribution is confirmed in most of the pairs and, specifically, the Static vs. NRTK pair seems to achieve the best congruence, while involving the PPP approach, pairs obtained with CSRS software achieve better congruence than those involving RTKLIB software.


2016 ◽  
Vol 7 (6) ◽  
pp. 1856-1873 ◽  
Author(s):  
Raquel M. Capilla ◽  
José Luis Berné ◽  
Angel Martín ◽  
Raul Rodrigo

2014 ◽  
Vol 67 (3) ◽  
pp. 523-537 ◽  
Author(s):  
Aigong Xu ◽  
Zongqiu Xu ◽  
Xinchao Xu ◽  
Huizhong Zhu ◽  
Xin Sui ◽  
...  

On 27 December 2012 it was announced officially that the Chinese Navigation Satellite System BeiDou (BDS) was able to provide operational services over the Asia-Pacific region. The quality of BDS observations was confirmed as comparable with those of GPS, and relative positioning in static and kinematic modes were also demonstrated to be very promising. As Precise Point Positioning (PPP) technology is widely recognized as a method of precise positioning service, especially in real-time, in this contribution we concentrate on the PPP performance using BDS data only. BDS PPP in static, kinematic and simulated real-time kinematic mode is carried out for a regional network with six stations equipped with GPS- and BDS-capable receivers, using precise satellite orbits and clocks estimated from a global BDS tracking network. To validate the derived positions and trajectories, they are compared to the daily PPP solution using GPS data. The assessment confirms that the performance of BDS PPP is very comparable with GPS in terms of both convergence time and accuracy.


GPS Solutions ◽  
2018 ◽  
Vol 23 (1) ◽  
Author(s):  
Yulong Ge ◽  
Feng Zhou ◽  
Tianjun Liu ◽  
WeiJin Qin ◽  
Shengli Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document