scholarly journals Calibration of a superconducting gravimeter with an absolute atom gravimeter

2021 ◽  
Vol 95 (5) ◽  
Author(s):  
Sébastien Merlet ◽  
Pierre Gillot ◽  
Bing Cheng ◽  
Romain Karcher ◽  
Almazbek Imanaliev ◽  
...  
2000 ◽  
Vol 117 (1-4) ◽  
pp. 3-20 ◽  
Author(s):  
N. Courtier ◽  
B. Ducarme ◽  
J. Goodkind ◽  
J. Hinderer ◽  
Y. Imanishi ◽  
...  

2021 ◽  
Author(s):  
Franck Pereira Dos Santos ◽  
Pierre Vermeulen ◽  
Sylvain Bonvalot ◽  
Germinal Gabalda ◽  
Nicolas Le Moigne ◽  
...  

<p>Since a few years, several laboratories, institutes or organizations through the world have acquired marketed quantum absolute gravimeters AQG developed by Muquans. Among their potentialities, these new generations of instruments are expected to complement the existing capabilities of long term monitoring of the Earth gravity field. A metrological evaluation of their performances for long-term measurements is thus a first step.</p><p>The LNE-SYRTE gravimetry laboratory in the suburb of Paris, has been designed to accommodate other gravimeters for metrological comparisons, tests and calibrations. Instruments of different classes operate in this well characterized laboratory: a laboratory-based absolute cold atom gravimeter (CAG) and a relative superconducting gravimeter iGrav. Both instruments allow for continuous measurements, Accuracy is guaranteed by the CAG and long-term stability by the iGrav.</p><p>We there have performed a more than one-year long measurement session with the initial version of the marketed quantum gravimeter AQG (AQG-A01).</p><p>An improved version of this AQG (AQG-B01) designed for outdoor measurement and recently acquired by RESIF (the French Seismologic and Geodetic Network) has been also implemented to close this session with a last month of simultaneous data recording involving all the instruments. Finally, we also performed supplementary accuracy tests, in particular to evaluate the Coriolis bias of the two AQG commercial sensors.</p><p>The talk will briefly present the different instruments to rapidly focus on the performances of the AQGs and results of the comparisons.</p>


2009 ◽  
Vol 47 (4) ◽  
pp. 180-190 ◽  
Author(s):  
Jeong Woo Kim ◽  
Juergen Neumeyer ◽  
Tae Hee Kim ◽  
Ik Woo ◽  
Hyuck-Jin Park ◽  
...  

2014 ◽  
Vol 56 (5) ◽  
Author(s):  
Hao Ding ◽  
Wen-Bin Shen

<p>Based upon SG (superconducting gravimeter) records, the autoregressive method proposed by Chao and Gilbert [1980] is used to determine the frequencies of the singlets of seven spheroidal modes (<sub>0</sub>S<sub>2</sub>, <sub>2</sub>S<sub>1</sub>, <sub>0</sub>S<sub>3</sub>, <sub>0</sub>S<sub>4</sub>, <sub>1</sub>S<sub>2</sub>, <sub>0</sub>S<sub>0</sub>, and <sub>3</sub>S<sub>1</sub>) and the degenerate frequencies of three toroidal modes (<sub>0</sub>T<sub>2</sub>, <sub>0</sub>T<sub>3</sub>, and <sub>0</sub>T<sub>4</sub>) below 1 mHz after two recent huge earthquakes, the 2010 Mw8.8 Maule earthquake and the 2011 Mw9.1 Tohoku earthquake. The corresponding quality factor <em>Q</em>s are also determined for those modes, of which the <em>Q</em>s of the five singlets of <sub>1</sub>S<sub>2</sub> and the five singlets (<em>m</em>=0, <em>m</em>=±2, and <em>m</em>=±3) of <sub>0</sub>S<sub>4</sub> are estimated for the first time using the SG observations. The singlet <em>m</em>=0 of <sub>3</sub>S<sub>1</sub> is clearly observed from the power spectra of the SG time series without using other special spectral analysis methods or special time series from pole station records. In addition, the splitting width ratio <em>R</em> of <sub>3</sub>S<sub>1</sub> is 0.99, and consequently we conclude that <sub>3</sub>S<sub>1</sub> is normally split. The frequencies and <em>Q</em>s of the modes below 1mHz may contribute to refining the 3D density and attenuation models of the Earth.</p>


1998 ◽  
Vol 41 (2) ◽  
Author(s):  
G. Casula

From August 1995 up to now, at the Enea Research Center of Brasimone, in the Italian Apennines between Bologna and Florence (Italy: 44º07'N, 11º.07'E, 890 m height), the superconducting gravimeter GWR model TT70 number T015 has been continuously recording the variation of the local gravity field, in the frame of the Global Geodynamics Project. The gravimetric laboratory, being a room of the disused nuclear power plant of Brasimone, is a very stable site, free from noise due to human activities. Data blocks of several months of continuous gravity records have been collected over a time span of three years, together with the meteorological data. The gravimeter has been calibrated at relative accuracy better than 0.3% with the aid of a mobile mass system, by imposed perturbations of the local gravity field and recording the gravimeter response. The results of this calibration technique were checked by two comparison experiments with absolute gravimeters performed during this period: the first, in May 1994 with the aid of the symmetrical rise and fall gravimeter of the Institute of Metrology Colonnetti of Turin, and the second in October 1997 involving an FG5 absolute gravimeter of the Institute de Physique du Globe of Strasbourg. The gravimeter signal was analysed to compute a high precision tidal model for Brasimone site. Starting from a set of gravimetric and atmospheric pressure data of high quality, relative to 46 months of observation, we performed the tidal analysis using Eterna 3.2 software to compute amplitudes, gravimetric factors and phases of the main waves of the Tamura catalogue. Finally a comparison experiment between two of the STS-1/VBB broadband seismometers of the MedNet project network and the gravity records relative to the Balleny Islands earthquake (March 25, 1998) were analysed to look for evidence of normal modes due to the free oscillations of the Earth.


Sign in / Sign up

Export Citation Format

Share Document