attenuation models
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 37)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 355 ◽  
pp. 03046
Author(s):  
Zheng Liu ◽  
Fu-an Sun ◽  
Bin Zhou

The sea atmosphere environment will affect the Ka frequency channel in TT&C. Firstly, this paper briefly introduces the Marine atmospheric environment. Attenuation models of water vapor solubility and rainfall intensity are established. The variation characteristics of atmospheric environment and the estimation method of rainfall intensity are studied. Finally, the influence of Marine atmosphere on Ka-band channel is simulated and analyzed. The simulation results show that different elevation angles have different effects on Ka-band channels. The influence result decreases gradually with the elevation Angle increasing.


2021 ◽  
Vol 2099 (1) ◽  
pp. 012060
Author(s):  
V A Mironov ◽  
S A Peretokin ◽  
K V Simonov

Abstract This study is devoted to the development of algorithms and software for earthquake record processing. The algorithms are based on the methodology used by the Pacific Earthquake Engineering Research Center for the implementation of the scientific project NGA-West2. The purpose of processing is to determine reliable values of ground acceleration and other parameters of earthquakes from the available records of velocity time series. To analyze the operation of the algorithms, earthquake records (simultaneously recorded time series of acceleration and velocity) taken from the European Rapid Raw Strong-Motion database were used. The developed algorithms and the implemented software will allow in the future to form a database of strong motions for building regional attenuation models on the territory of the Russian Federation.


2021 ◽  
Vol 11 (18) ◽  
pp. 8360
Author(s):  
Md Abdus Samad ◽  
Dong-You Choi

The scaling of rain attenuation methods is promising to quickly estimate power degradation in radio links due to rain with known findings from previous measurements. Although the frequency scaling of rain attenuation technique was introduced ages ago, it has not been addressed adequately. Furthermore, some emerging scaling techniques have recently been proposed in the literature through polarization, elevation angle, and pathlength parameters. A survey paper might play a vital role in order to comprehend all these study areas systematically. However, a survey paper on this research field is currently unavailable in the literature. This review categorizes all the research works using the inherent properties of scaling techniques. Furthermore, this study presents a comparative investigation of parameter-based scaling techniques by considering their working procedure, applicable frequency ranges, and innovative ideas incorporated with all of these models.


2021 ◽  
Author(s):  
Jaroslav Pastorek ◽  
Martin Fencl ◽  
Jörg Rieckermann ◽  
Vojtěch Bareš

An inadequate correction for wet antenna attenuation (WAA) often causes a notable bias in quantitative precipitation estimates (QPEs) from commercial microwave links (CMLs) limiting the usability of these rainfall data in hydrological applications. This paper analyzes how WAA can be corrected without dedicated rainfall monitoring for a set of 16 CMLs. Using data collected over 53 rainfall events, the performance of six empirical WAA models was studied, both when calibrated to rainfall observations from a permanent municipal rain gauge network and when using model parameters from the literature. The transferability of WAA model parameters among CMLs of various characteristics has also been addressed. The results show that high-quality QPEs with a bias below 5% and RMSE of 1 mm/h in the median could be retrieved, even from sub-kilometer CMLs where WAA is relatively large compared to raindrop attenuation. Models in which WAA is proportional to rainfall intensity provide better WAA estimates than constant and time-dependent models. It is also shown that the parameters of models deriving WAA explicitly from rainfall intensity are independent of CML frequency and path length and, thus, transferable to other locations with CMLs of similar antenna properties.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 2030 ◽  
Author(s):  
Md Abdus Samad ◽  
Feyisa Debo Diba ◽  
Dong-You Choi

Scaling rain attenuation parameters will significantly benefit the quick monitoring of rain attenuation in a particular channel with previously known results or in situ setup attenuation measurements. Most of the rain attenuation scaling techniques have been derived for slant links. In this study, we also applied frequency and polarization scaling techniques for terrestrial link applications. We collected real measured datasets from research paper publications and examined those datasets using International Telecommunication Union-Radiocommunication sector (ITU-R) models (P.530-17, P.618-13). Our analyzed results show that existing long-term frequency and polarization scaling rain attenuation models (ITU-R P.618-13 for slant links and ITU-R P.530-17 for terrestrial links) show reduced performance for frequency and polarization scaling measured locations in South Korea. Hence, we proposed a new scaling technique using artificial neural networks from the measured rain attenuation data of slant and terrestrial links in South Korea. The experimental results confirm that the proposed Artificial Neural Network (ANN)-based scaling model shows satisfactory performance to predict attenuation for frequency and vertical polarization scaling.


Author(s):  
Sevtap Arslan ◽  
Fatma Bilge Ergen ◽  
Güzide Burça Aydın ◽  
Mehmet Ayvaz ◽  
Jale Karakaya ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 1965
Author(s):  
Md Abdus Samad ◽  
Feyisa Debo Diba ◽  
Dong-You Choi

Satellite communication is a promising transmission technique to implement 5G and beyond networks. Attenuation due to rain begins at a frequency of 10 GHz in temperate regions. However, some research indicates that such attenuation effects start from 5–7 GHz, especially in tropical regions. Therefore, modeling rain attenuation is significant for propagating electromagnetic waves to achieve the required quality of service. In this survey, different slant link rain attenuation prediction models have been examined, classified, and analyzed, and various features like improvements, drawbacks, and particular aspects of these models have been tabulated. This survey provides various techniques for obtaining input data sets, including rain height, efficient trajectory length measurement techniques, and rainfall rate conversion procedures. No survey of the Earth–space link models for rain attenuation is available to the best of our knowledge. In this study, 23 rain attenuation models have been investigated. For easy readability and conciseness, the details of each model have not been included. The comparative analysis will assist in propagation modeling and planning the link budget of slant links.


Sign in / Sign up

Export Citation Format

Share Document