Analytical calculation method for the non-linear characteristic of ferrite-cored inductors with stepped air gap

2016 ◽  
Vol 99 (1) ◽  
pp. 421-429
Author(s):  
E. Stenglein ◽  
M. Albach
Author(s):  
Jianqi Li ◽  
Yu Zhou ◽  
Jianying Li

This paper presented a novel analytical method for calculating magnetic field in the slotted air gap of spoke-type permanent-magnet machines using conformal mapping. Firstly, flux density without slots and complex relative air-gap permeance of slotted air gap are derived from conformal transformation separately. Secondly, they are combined in order to obtain normalized flux density taking account into the slots effect. The finite element (FE) results confirmed the validity of the analytical method for predicting magnetic field and back electromotive force (BEMF) in the slotted air gap of spoke-type permanent-magnet machines. In comparison with FE result, the analytical solution yields higher peak value of cogging torque.


2021 ◽  
Author(s):  
Zhuang Kang ◽  
Yansong Zhang ◽  
Haibo Sui ◽  
Rui Chang

Abstract Air gap is pivotal to the hydrodynamic performance for the semi-submersible platform as a key characteristic for the strength assessment and safety evaluation. Considering the metocean conditions of the Norse Sea, the hydrodynamic performance of a semi-submersible platform has been analyzed. Based on the three-dimensional potential flow theory, and combined with the full QTF matrix and the second-order difference frequency loads, the nonlinear motion characteristics and the prediction for air gap have been simulated. The wave frequency motion response, the second-order nonlinear air gap response and nonlinear motion response of the platform have been analyzed. By comparing the simulation results, the air gap response of the platform considering the nonlinear motion is more intense than the results simulated by the first-order motion without considering the second-order difference frequency loads. Under the heavy metocean conditions, for the heave and pitch motion of the platform, the non-linear simulation values for some air gap points and areas are negative which means the wave slam has been occurred, but the calculation results of linear motion response indicate that the air gap above has not appeared the wave slamming areas. The simulation results present that the influence of the second-order wave loads is a critical part in the air gap prediction for the semi-submersible platform.


Author(s):  
Kimihiro Toh ◽  
Shunsuke Maeda ◽  
Takao Yoshikawa

In order to obtain the non-linear average stress-average strain relationships (σ-ε curves) of damaged structural members under both tensile and compressive loads, the systematical calculations are performed using the non-linear FE analysis (FEA) code, LS-DYNA, and the idealized σ-ε curves of damaged structural members are estimated from FEA results. In addition, by introducing the idealized σ-ε curves of damaged structural members to the simplified calculation program, which is developed by authors and based on the Smith’s method, the residual ultimate strength of damaged hull structures is calculated. The residual ultimate strength of damaged hull structures is also calculated utilizing FEA, the calculation results by the simplified calculation program are compared with the results obtained from FE analyses so as to examine the accuracy of simplified calculation method.


Sign in / Sign up

Export Citation Format

Share Document