Energy flow control of electric vehicle based on GNSS

Author(s):  
Matus Danko ◽  
Branislav Hanko ◽  
Peter Drgona ◽  
Ondrej Hock
Author(s):  
Krister Leonart Haugen ◽  
Konstantinos Papastergiou ◽  
Panagiotis Asimakopoulos ◽  
Dimosthenis Peftitsis

2017 ◽  
Vol 50 (7-8) ◽  
pp. 159-168 ◽  
Author(s):  
Yavuz Bahadır Koca ◽  
Yüksel Oğuz ◽  
Ahmet Yönetken

In this proposal, microcontroller-based energy flow control was designed in order to effectively and efficiently enable the use of energy sources in a hybrid energy generation system including wind, solar, and hydrogen energy. It was assumed that the hybrid energy generation system is dynamic during the design of the microcontroller-based energy flow control. A wind–solar energy generation system was determined as the base load power plant. Depending on the demand, the battery group and fuel cell were activated effectively. If an energy surplus occurred, it was stored in battery groups and transformed into hydrogen energy via a hydrogen generator simultaneously. In addition to providing energy sustainability, a constant active status of the energy storage group was prevented and the physical life of the group was prolonged by means of the microcontroller-based control system. If consumer demand could not be met by the main energy sources including wind and solar energy, the battery groups and fuel cell were activated and provided the energy sustainability. After a certain level of charge was reached in the battery group, it was deactivated via the control system in order to prevent unnecessary use of energy. By means of the microcontroller-based control system, the usage of energy generated with the hybrid energy generation system was analysed according to its efficiency.


2005 ◽  
Vol 38 (1) ◽  
pp. 218-223 ◽  
Author(s):  
Kasemsak Uthaichana ◽  
Sorin Bengea ◽  
Raymond DeCarlo

2013 ◽  
Vol 712-715 ◽  
pp. 2173-2178
Author(s):  
Ping Sun ◽  
Xiu Min Yu ◽  
Wei Dong ◽  
Ling He

Hybrid electric vehicle (HEV) is integrated with the engine, the motor and the battery and so on. HEV has a significantly better fuel efficiency compared with conventional vehicles due to its multiple power sources. To evaluate fuel economy, HEV and its subsystem modeling methodologies were provided through the analysis of energy flow. The Equivalent Consumption Minimization Strategy (ECMS) was built based on the prototype. The ECMS implementation analytical formulation was developed. The equivalency factor, one for charging and the other for discharging, each of them was different during a driving cycle. In a certain drive, only a subset of them generates a trend close to zero, which indicates charge-sustainability.


Sign in / Sign up

Export Citation Format

Share Document