Phylogenetic diversity of nitrogen-fixing bacteria in mangrove sediments assessed by PCR–denaturing gradient gel electrophoresis

2008 ◽  
Vol 190 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Yanying Zhang ◽  
Junde Dong ◽  
Zhihao Yang ◽  
Si Zhang ◽  
Youshao Wang
2021 ◽  
Vol 8 (5) ◽  
pp. 55
Author(s):  
Claudia Rodriguez-Gonzalez ◽  
Carolina Ospina-Betancourth ◽  
Janeth Sanabria

The increasing use of chemical fertilizers causes the loss of natural biological nitrogen fixation in soils, water eutrophication and emits more than 300 Mton CO2 per year. It also limits the success of external bacterial inoculation in the soil. Nitrogen fixing bacteria can be inhibited by the presence of ammonia as its presence can inhibit biological nitrogen fixation. Two aerobic sludges from wastewater treatment plants (WWTP) were exposed to high ammonium salts concentrations (>450 mg L−1 and >2 dS m−1). Microbial analysis after treatment through 16S pyrosequencing showed the presence of Fluviicola sp. (17.70%), a genus of the Clostridiaceae family (11.17%), and Azospirillum sp. (10.42%), which were present at the beginning with lower abundance. Denaturing gradient gel electrophoresis (DGGE) analysis based on nifH genes did not show changes in the nitrogen-fixing population. Nitrogen-Fixing Bacteria (NFB) were identified and associated with other microorganisms involved in the nitrogen cycle, presumably for survival at extreme conditions. The potential use of aerobic sludges enriched with NFB is proposed as an alternative to chemical fertilizer as this bacteria could supplement nitrogen to the plant showing competitive results with chemical fertilization.


2020 ◽  
Vol 51 (2) ◽  
pp. 125-146
Author(s):  
Nasiruddin Nasiruddin ◽  
Yu Zhangxin ◽  
Ting Zhao Chen Guangying ◽  
Minghui Ji

We grew cucumber in pots in greenhouse for 9-successive cropping cycles and analyzed the rhizosphere Pseudomonas spp. community structure and abundance by PCR-denaturing gradient gel electrophoresis and quantitative PCR. Results showed that continuous monocropping changed the cucumber rhizosphere Pseudomonas spp. community. The number of DGGE bands, Shannon-Wiener index and Evenness index decreased during the 3rd cropping and thereafter, increased up to the 7th cropping, however, however, afterwards they decreased again. The abundance of Pseudomonas spp. increased up to the 5th successive cropping and then decreased gradually. These findings indicated that the structure and abundance of Pseudomonas spp. community changed with long-term cucumber monocropping, which might be linked to soil sickness caused by its continuous monocropping.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Qiufen Li ◽  
Yan Zhang ◽  
David Juck ◽  
Nathalie Fortin ◽  
Charles W. Greer

The impact of intensive land-based fish culture in Qingdao, China, on the bacterial communities in surrounding marine environment was analyzed. Culture-based studies showed that the highest counts of heterotrophic, ammonium-oxidizing, nitrifying, and nitrate-reducing bacteria were found in fish ponds and the effluent channel, with lower counts in the adjacent marine area and the lowest counts in the samples taken from 500 m off the effluent channel. Denaturing gradient gel electrophoresis (DGGE) analysis was used to assess total bacterial diversity. Fewer bands were observed from the samples taken from near the effluent channel compared with more distant sediment samples, suggesting that excess nutrients from the aquaculture facility may be reducing the diversity of bacterial communities in nearby sediments. Phylogenetic analysis of the sequenced DGGE bands indicated that the bacteria community of fish-culture-associated environments was mainly composed of Flavobacteriaceae, gamma- and deltaproteobacteria, including generaGelidibacter, Psychroserpen, Lacinutrix,andCroceimarina.


2003 ◽  
Vol 69 (11) ◽  
pp. 6380-6385 ◽  
Author(s):  
R. Temmerman ◽  
L. Masco ◽  
T. Vanhoutte ◽  
G. Huys ◽  
J. Swings

ABSTRACT The taxonomic characterization of a bacterial community is difficult to combine with the monitoring of its temporal changes. None of the currently available identification techniques are able to visualize a “complete” community, whereas techniques designed for analyzing bacterial ecosystems generally display limited or labor-intensive identification potential. This paper describes the optimization and validation of a nested-PCR-denaturing gradient gel electrophoresis (DGGE) approach for the species-specific analysis of bifidobacterial communities from any ecosystem. The method comprises a Bifidobacterium-specific PCR step, followed by purification of the amplicons that serve as template DNA in a second PCR step that amplifies the V3 and V6-V8 regions of the 16S rRNA gene. A mix of both amplicons is analyzed on a DGGE gel, after which the band positions are compared with a previously constructed database of reference strains. The method was validated through the analysis of four artificial mixtures, mimicking the possible bifidobacterial microbiota of the human and chicken intestine, a rumen, and the environment, and of two fecal samples. Except for the species Bifidobacterium coryneforme and B. indicum, all currently known bifidobacteria originating from various ecosystems can be identified in a highly reproducible manner. Because no further cloning and sequencing of the DGGE bands is necessary, this nested-PCR-DGGE technique can be completed within a 24-h span, allowing the species-specific monitoring of temporal changes in the bifidobacterial community.


Sign in / Sign up

Export Citation Format

Share Document