scholarly journals The diarrhetic shellfish-poisoning toxin, okadaic acid, provokes gastropathy, dysbiosis and susceptibility to bacterial infection in a non-rodent bioassay, Galleria mellonella

Author(s):  
Helena Emery ◽  
William Traves ◽  
Andrew F. Rowley ◽  
Christopher J. Coates

AbstractDiarrhetic shellfish-poisoning (DSP) toxins such as okadaic acid and dinophysistoxins harm the human gastrointestinal tract, and therefore, their levels are regulated to an upper limit of 160 μg per kg tissue to protect consumers. Rodents are used routinely for risk assessment and studies concerning mechanisms of toxicity, but there is a general move toward reducing and replacing vertebrates for these bioassays. We have adopted insect larvae of the wax moth Galleria mellonella as a surrogate toxicology model. We treated larvae with environmentally relevant doses of okadaic acid (80–400 μg/kg) via intrahaemocoelic injection or gavage to determine marine toxin-related health decline: (1) whether pre-exposure to a sub-lethal dose of toxin (80 μg/kg) enhances susceptibility to bacterial infection, or (2) alters tissue pathology and bacterial community (microbiome) composition of the midgut. A sub-lethal dose of okadaic acid (80 μg/kg) followed 24 h later by bacterial inoculation (2 × 105Escherichia coli) reduced larval survival levels to 47%, when compared to toxin (90%) or microbial challenge (73%) alone. Histological analysis of the midgut depicted varying levels of tissue disruption, including nuclear aberrations associated with cell death (karyorrhexis, pyknosis), loss of organ architecture, and gross epithelial displacement into the lumen. Moreover, okadaic acid presence in the midgut coincided with a shift in the resident bacterial population over time in that substantial reductions in diversity (Shannon) and richness (Chao-1) indices were observed at 240 μg toxin per kg. Okadaic acid-induced deterioration of the insect alimentary canal resembles those changes reported for rodent bioassays.

2012 ◽  
Vol 75 (11) ◽  
pp. 2000-2006 ◽  
Author(s):  
KA JEONG LEE ◽  
JONG SOO MOK ◽  
KI CHEOL SONG ◽  
HONGSIK YU ◽  
DOO SEOG LEE ◽  
...  

Okadaic acid (OA), dinophysistoxin-1 (DTX1), pectenotoxin-2, and yessotoxin (YTX) are classes of lipophilic toxins found in marine animals. OA and DTX1 accumulation causes diarrhetic shellfish poisoning, a worldwide public health problem. Diarrhetic shellfish poisoning has not previously been reported in gastropods, which are widely consumed in Korea. Seasonal variation in marine lipophilic toxins in gastropods was investigated using liquid chromatography–tandem mass spectrometry. Eighty specimens of Neptunea cumingii, 65 specimens of Rapana venosa, and 95 specimens of Batillus cornutus were collected at the Tongyeong fish market on the southern coast of Korea between May 2009 and December 2010. OA, DTX1, and YTX were detected in meat and digestive glands in all gastropod species studied. Pectenotoxin-2 was not found in any sample tested. Lipophilic toxins were detected in the digestive glands of gastropods; no lipophilic toxin was detected in the salivary glands of the carnivorous gastropods, N. cumingii and R. venosa. The highest concentrations of OA (21.5 ng/g) and DTX1 (8.4 ng/g) were detected in the digestive glands of R. venosa, and the maximum concentration of YTX (13.7 ng/g) was found in the digestive glands of N. cumingii. The maximum toxicities in gastropod tissues were lower than the European standard for acceptable levels. The concentrations of lipophilic toxins in carnivorous gastropods showed a high degree of seasonal variation; lipophilic toxins in carnivorous gastropods were found predominantly in spring and summer. This is the first report of the occurrence of lipophilic toxins in Korean gastropods.


1986 ◽  
Vol 50 (11) ◽  
pp. 2853-2857 ◽  
Author(s):  
Masanori KUMAGAI ◽  
Toshihiko YANAGI ◽  
Michio MURATA ◽  
Takeshi YASUMOTO ◽  
Marie KAT ◽  
...  

2001 ◽  
Vol 36 (2) ◽  
pp. 342-350 ◽  
Author(s):  
Anthony J. Windust ◽  
Tingmo Hu ◽  
Jeffrey L. C. Wright ◽  
Michael A. Quilliam ◽  
Jack L. McLachlan

Sign in / Sign up

Export Citation Format

Share Document