Conservative numerical schemes with optimal dispersive wave relations: Part I. Derivation and analysis

Author(s):  
Qingshan Chen ◽  
Lili Ju ◽  
Roger Temam
Author(s):  
Marianne Bessemoulin-Chatard ◽  
Claire Chainais-Hillairet ◽  
Hélène Mathis

2021 ◽  
pp. 107754632199888
Author(s):  
Richa Kumari ◽  
Abhishek K Singh

This study discusses the propagation of a horizontally polarised shear wave in a layered composite structure consisting of couple stress stratum over a functionally graded orthotropic viscoelastic substrate due to point source existing at an imperfect interface of the stratum and substrate. Because of the CS effect in the stratum, the existence of the second kind of dispersive (shear) wave is established along with conventional first kind of a shear wave. The closed-form dispersion equations and damping equations of the first and second kind of a dispersive wave are derived by adopting non-traditional boundary conditions and Green’s function technique. The effect of characteristic length of microstructure, imperfect bonding parameter and functional gradient parameters on velocity profiles and attenuation profiles of the first and second kind of dispersive wave has been computed numerically and delineated graphically. For validation, established results are matched with the classical one.


2021 ◽  
Vol 400 ◽  
pp. 126072
Author(s):  
Ll. Gascón ◽  
J.M. Corberán ◽  
J.A. García-Manrique

2021 ◽  
Vol 126 (1) ◽  
Author(s):  
Alex Doak ◽  
Jean-Marc Vanden-Broeck

AbstractThis paper concerns the flow of fluid exiting a two-dimensional pipe and impacting an infinite wedge. Where the flow leaves the pipe there is a free surface between the fluid and a passive gas. The model is a generalisation of both plane bubbles and flow impacting a flat plate. In the absence of gravity and surface tension, an exact free streamline solution is derived. We also construct two numerical schemes to compute solutions with the inclusion of surface tension and gravity. The first method involves mapping the flow to the lower half-plane, where an integral equation concerning only boundary values is derived. This integral equation is solved numerically. The second method involves conformally mapping the flow domain onto a unit disc in the s-plane. The unknowns are then expressed as a power series in s. The series is truncated, and the coefficients are solved numerically. The boundary integral method has the additional advantage that it allows for solutions with waves in the far-field, as discussed later. Good agreement between the two numerical methods and the exact free streamline solution provides a check on the numerical schemes.


2016 ◽  
Vol 78 (8-2) ◽  
Author(s):  
Norma Alias ◽  
Nadia Nofri Yeni Suhari ◽  
Hafizah Farhah Saipan Saipol ◽  
Abdullah Aysh Dahawi ◽  
Masyitah Mohd Saidi ◽  
...  

This paper proposed the several real life applications for big data analytic using parallel computing software. Some parallel computing software under consideration are Parallel Virtual Machine, MATLAB Distributed Computing Server and Compute Unified Device Architecture to simulate the big data problems. The parallel computing is able to overcome the poor performance at the runtime, speedup and efficiency of programming in sequential computing. The mathematical models for the big data analytic are based on partial differential equations and obtained the large sparse matrices from discretization and development of the linear equation system. Iterative numerical schemes are used to solve the problems. Thus, the process of computational problems are summarized in parallel algorithm. Therefore, the parallel algorithm development is based on domain decomposition of problems and the architecture of difference parallel computing software. The parallel performance evaluations for distributed and shared memory architecture are investigated in terms of speedup, efficiency, effectiveness and temporal performance.


Sign in / Sign up

Export Citation Format

Share Document