scholarly journals Effects of methylphenidate on reinforcement learning depend on working memory capacity

Author(s):  
Mojtaba Rostami Kandroodi ◽  
Jennifer L. Cook ◽  
Jennifer C. Swart ◽  
Monja I. Froböse ◽  
Dirk E. M. Geurts ◽  
...  

Abstract Rationale Brain catecholamines have long been implicated in reinforcement learning, exemplified by catecholamine drug and genetic effects on probabilistic reversal learning. However, the mechanisms underlying such effects are unclear. Objectives and methods Here we investigated effects of an acute catecholamine challenge with methylphenidate (20 mg, oral) on a novel probabilistic reversal learning paradigm in a within-subject, double-blind randomised design. The paradigm was designed to disentangle effects on punishment avoidance from effects on reward perseveration. Given the known large individual variability in methylphenidate’s effects, we stratified our effects by working memory capacity and trait impulsivity, putatively modulating the effects of methylphenidate, in a large sample (n = 102) of healthy volunteers. Results Contrary to our prediction, methylphenidate did not alter performance in the reversal phase of the task. Our key finding is that methylphenidate altered learning of choice-outcome contingencies in a manner that depended on individual variability in working memory span. Specifically, methylphenidate improved performance by adaptively reducing the effective learning rate in participants with higher working memory capacity. Conclusions This finding emphasises the important role of working memory in reinforcement learning, as reported in influential recent computational modelling and behavioural work, and highlights the dependence of this interplay on catecholaminergic function.


2020 ◽  
Author(s):  
Mojtaba Rostami Kandroodi ◽  
Jennifer Cook ◽  
Jennifer Swart ◽  
Monja Isabel Froböse ◽  
Dirk Geurts ◽  
...  

Brain catecholamines have long been implicated in cognitive flexibility, exemplified by catecholamine drug and genetic effects on probabilistic reversal learning. However, the mechanisms underlying such effects are unclear. Here we investigated effects of an acute catecholamine challenge with methylphenidate (20 mg, oral) on a novel probabilistic reversal learning paradigm with three options, which was designed to disentangle effects on punishment avoidance from effects on reward perseveration. Given the known large individual variability in methylphenidate’s effects, we stratified our effects by working memory capacity and trait impulsivity, putative proxies of baseline dopamine, in a large sample (n = 102) of healthy volunteers. Contrary to our prediction, methylphenidate did not alter performance in the reversal phase of the task. However, learning rates during the initial acquisition phase of the task were altered by methylphenidate, in a manner that depended on baseline working memory capacity. Participants with greater capacity exhibited greater adaptive reduction of the learning rate in this initial phase, in which outcome contingencies were stable. We hypothesize that the addition of a third choice option in this novel paradigm increased the demands for reinforcement learning, uncovering an effect of methylphenidate on initial learning rather than flexibility to reverse what was learnt.





2009 ◽  
Vol 62 (7) ◽  
pp. 1430-1454 ◽  
Author(s):  
Bradley J. Poole ◽  
Michael J. Kane

Variation in working-memory capacity (WMC) predicts individual differences in only some attention-control capabilities. Whereas higher WMC subjects outperform lower WMC subjects in tasks requiring the restraint of prepotent but inappropriate responses, and the constraint of attentional focus to target stimuli against distractors, they do not differ in prototypical visual-search tasks, even those that yield steep search slopes and engender top-down control. The present three experiments tested whether WMC, as measured by complex memory span tasks, would predict search latencies when the 1–8 target locations to be searched appeared alone, versus appearing among distractor locations to be ignored, with the latter requiring selective attentional focus. Subjects viewed target-location cues and then fixated on those locations over either long (1,500–1,550 ms) or short (300 ms) delays. Higher WMC subjects identified targets faster than did lower WMC subjects only in the presence of distractors and only over long fixation delays. WMC thus appears to affect subjects’ ability to maintain a constrained attentional focus over time.





2019 ◽  
Vol 5 (2) ◽  
pp. 189-219
Author(s):  
Paula Jane Hubber ◽  
Camilla Gilmore ◽  
Lucy Cragg

Previous research has demonstrated that working memory performance is linked to mathematics achievement. Most previous studies have involved children and arithmetic rather than more advanced forms of mathematics. This study compared the performance of groups of adult mathematics and humanities students. Experiment 1 employed verbal and visuo-spatial working memory span tasks using a novel face-matching processing element. Results showed that mathematics students had greater working memory capacity in the visuo-spatial domain only. Experiment 2 replicated this and demonstrated that neither visuo-spatial short-term memory nor endogenous spatial attention explained the visuo-spatial working memory differences. Experiment 3 used working memory span tasks with more traditional verbal or visuo-spatial processing elements to explore the effect of processing type. In this study mathematics students showed superior visuo-spatial working memory capacity only when the processing involved had a comparatively low level of central executive involvement. Both visuo-spatial working memory capacity and general visuo-spatial skills predicted mathematics achievement.



2020 ◽  
Vol 3 (2) ◽  
pp. 97
Author(s):  
Johana Aprilia ◽  
Frieda Maryam Mangunsong

Children with hearing impairment or deafness experience cognitive function delays but not limited visual-spatial working memory, which is commonly used to solve mathematical problems. Previous studies have discovered that visual or spatial working memory in such children is different because of the communication methods that rely on vision. This study explores the visual-spatial working memory in children with deafness by measuring the memory of 70 elementary school children with deafness and identifying their communication methods through questionnaires. The questionnaires were completed by the children’s parents. The visual-spatial working memory measurement utilized the Lion Game through Zoom meetings. Consequently, it was found that there was no significant difference in visual-spatial working memory capacity in children with hearing impairment using oral, total communication, and sign language. It can be argued that in children with deafness, their visual-spatial working memory span with oral, total, and sign language communication methods have still not reached the maximum point. The use of hearing aids, popular among such children also did not significantly enhance visual-spatial working memory capacity. This research recommends parents be more attentive not only toward the communication methods of children with deafness but also to their cognitive function development. 





2017 ◽  
Vol 26 (4) ◽  
pp. 335-345 ◽  
Author(s):  
Takehiro Minamoto ◽  
Hiroyuki Tsubomi ◽  
Naoyuki Osaka

Working memory capacity (WMC) indicates an individual’s capability of executive attentional control, which is thought to be critical for general fluid intelligence. Individual variability in WMC has been attributed to the function of the lateral prefrontal cortex (lPFC); however, it is still less clear how the lPFC contributes to individual differences in WMC. Referring to functional neuroimaging studies, we consider three possible neural mechanisms. First, greater task-related activity of the lPFC predicts higher WMC across tasks. Second, a specific task-related functional connectivity also predicts higher WMC. The lPFC consistently forms a part of the connectivity while the coupled region varies depending on tasks. Thus, WMC is reflected by not a fixed but flexible connectivity regulated by the lPFC. Third, distinctive intrinsic connectivity even during resting state is also responsible for individual differences in WMC, with the lPFC seated at a critical hub within the network. These three neural mechanisms differentially contribute to WMC, and therefore, complementarily explain individual differences in WMC.



2004 ◽  
Vol 16 (9) ◽  
pp. 1562-1575 ◽  
Author(s):  
Christian J. Fiebach ◽  
Sandra H. Vos ◽  
Angela D. Friederici

Syntactically ambiguous sentences have been found to be difficult to process, in particular, for individuals with low working memory capacity. The current study used fMRI to investigate the neural basis of this effect in the processing of written sentences. Participants with high and low working memory capacity read sentences with either a short or long region of temporary syntactic ambiguity while being scanned. A distributed left-dominant network in the peri-sylvian region was identified to support sentence processing in the critical region of the sentence. Within this network, only the superior portion of Broca's area (BA 44) and a parietal region showed an activation increase as a function of the length of the syntactically ambiguous region in the sentence. Furthermore, it was only the BA 44 region that exhibited an interaction of working memory span, length of the syntactic ambiguity, and sentence complexity. In this area, the activation increase for syntactically more complex sentences became only significant under longer regions of ambiguity, and for low span readers only. This finding suggests that neural activity in BA 44 increases during sentence comprehension when processing demands increase, be it due to syntactic processing demands or by an interaction with the individually available working memory capacity.



Sign in / Sign up

Export Citation Format

Share Document