reversal phase
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 14)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Tzong-Shiue Yu ◽  
Yacine Tensaouti ◽  
Elizabeth P. Stephanz ◽  
Sana Chintamen ◽  
Elizabeth E. Rafikian ◽  
...  

AbstractPolymorphisms in the apolipoprotein E (ApoE) gene confer a major genetic risk for the development of late-onset Alzheimer’s disease (AD) and are predictive of outcome following traumatic brain injury (TBI). Alterations in adult hippocampal neurogenesis have long been associated with both the development of AD and recovery following TBI and ApoE is known to play a role in this process. In order to determine how ApoE might influence hippocampal injury-induced neurogenesis, we generated a conditional knockout system whereby functional ApoE from astrocytes was ablated prior to injury. While successfully ablating ApoE just prior to TBI in mice, we observed an attenuation in the development of the spines in the newborn neurons. Intriguingly, animals with a double-hit, i.e. injury and ApoE conditionally inactivated in astrocytes, demonstrated the most pronounced impairments in the hippocampal-dependent Morris water maze test, failing to exhibit spatial memory after both acquisition and reversal training trials. In comparison, conditional knockout mice without injury displayed impairments but only in the reversal phase of the test, suggesting accumulative effects of astrocytic ApoE deficiency and traumatic brain injury on AD-like phenotypes. Together, these findings demonstrate that astrocytic ApoE is required for functional injury-induced neurogenesis following traumatic brain injury.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
H.N.K. Al-Salman ◽  
Qutaiba A. Qasim ◽  
Rajaa Hussein Fayadh ◽  
Hussein H. Hussein

Purpose The purpose of this study is to establish Loratadine [LRD] quantification in purified and capsule formulations using a precise and specific Reversal Phase with a very high-performance liquid Chromatographic [RP-HPLC] technique. The approach was evaluated in agreement with the principles of the International Conference on Harmonization [ICH]. Arcus EP-C18 Ion Pac column, 5 m, 4.6 mm, 250 mm, mobile phase Methanol: Acetonitrile (60:40) v/v. Dibasic potassium phosphate buffer, pH 7.2, flow rate 1.0 ml/min. Design/methodology/approach The HPLC system used a 340 nm UV detector for testing. A 10-min run time was used for the analysis. At concentrations ranging from 2 to 10 g/ml, the technique was linear (R2 = 0.9998), exact (intra-day and inter-day relative standard deviation [RSD] values 1.0%), accurate (range recovery = 96%–102%), exclusive and strong. Findings The detecting and quantitation limits were 0.92 g/ml and 2.15 g/ml, respectively. Originality/value The findings demonstrated that the proposed method could accurately determine LRD in bulk and pill dose formats quickly and accurately.


Author(s):  
Jonathan W. Kanen ◽  
Annemieke M. Apergis-Schoute ◽  
Robyn Yellowlees ◽  
Fréderique E. Arntz ◽  
Febe E. van der Flier ◽  
...  

AbstractSerotonin is involved in updating responses to changing environmental circumstances. Optimising behaviour to maximise reward and minimise punishment may require shifting strategies upon encountering new situations. Likewise, autonomic responses to threats are critical for survival yet must be modified as danger shifts from one source to another. Whilst numerous psychiatric disorders are characterised by behavioural and autonomic inflexibility, few studies have examined the contribution of serotonin in humans. We modelled both processes, respectively, in two independent experiments (N = 97). Experiment 1 assessed instrumental (stimulus-response-outcome) reversal learning whereby individuals learned through trial and error which action was most optimal for obtaining reward or avoiding punishment initially, and the contingencies subsequently reversed serially. Experiment 2 examined Pavlovian (stimulus-outcome) reversal learning assessed by the skin conductance response: one innately threatening stimulus predicted receipt of an uncomfortable electric shock and another did not; these contingencies swapped in a reversal phase. Upon depleting the serotonin precursor tryptophan—in a double-blind randomised placebo-controlled design—healthy volunteers showed impairments in updating both actions and autonomic responses to reflect changing contingencies. Reversal deficits in each domain, furthermore, were correlated with the extent of tryptophan depletion. Initial Pavlovian conditioning, moreover, which involved innately threatening stimuli, was potentiated by depletion. These results translate findings in experimental animals to humans and have implications for the neurochemical basis of cognitive inflexibility.


2021 ◽  
Author(s):  
Alyssa Moore ◽  
Jérôme Linden ◽  
James David Jentsch

Behavioral flexibility enables the ability to adaptively respond to changes in contingency requirements to maintain access to desired outcomes, and deficits in behavioral flexibility have been documented in many psychiatric disorders. Previous research has shown a correlation between behavioral flexibility measured in a reversal learning test and Syn3, the gene encoding synapsin III, which negatively regulates phasic dopamine release. Syn3 expression in the hippocampus, striatum, and neocortex is reported to be negatively correlated with reversal learning performance, so here, we utilized a global knockout line to investigate reversal learning in mice homozygous wildtype, heterozygous null, and homozygous null for the Syn3 gene. Compared to wildtype animals, we found a reversal specific effect of genetic Syn3 deficiency that resulted in a greater proportional increase in trials required to reach a preset performance criteria during contingency reversal, despite no observed genotype effects on the ability to acquire the initial discrimination. Behavioral flexibility scores, which quantified the likelihood of switching subsequent choice behavior following positive or negative feedback, became significantly more negative in reversal only for Syn3 homozygous null mice, suggesting a substantial increase in perseverative behavior in the reversal phase. Syn3 ablation reduced the number of anticipatory responses made per trial, often interpreted as a measure of waiting impulsivity. Overall, Syn3 expression negatively affected behavioral flexibility in a reversal specific manner but may have conferred an advantage on waiting impulsivity.


2021 ◽  
Vol 83 (3) ◽  
pp. 21-27
Author(s):  
Khusnul Yakin ◽  
Ita Setyaningsih ◽  
Nurani Indha Rusmana ◽  
Mohammad Tirono ◽  
Rofiqul Umam

Osteoporosis is a disease  affecting bones which is characterized by decreased bone density;  bones become porous and  susceptible to fractures. Osteoporosis occurs because of an imbalance during bone remodeling phase between resorption and formation processes. This study aims to simulate the effects of mechanical stimulations on the femoral bone elasticity limit. It is hoped that these mechanical stimuli can provide information on bone elasticity limits. Initially, we constructed the femur in two layers using triangular elements. Then we entered the bone properties (Young’s modulus and Poisson’s ratio) based on the age of the femur. After that we  calculated the value of the stress, strain, and strain rate in the reversal phase. Next, we calculated the  bone density using the thermodynamic equation and calculation of the bone elasticity limit using particle swarm optimization (PSO) methods. The value of stress and strain caused by walking is higher than the value of stress and strain when standing still. In this case, the difference in activity results an increase in stress by 33.82% and an increase in strain and strain rate by 34.57%. Based on these simulation results, it can be concluded that mechanical stimulation can increase the limit of bone elasticity to 2.99% in cortical bone and 0.975% in trabecular bone. Bone elasticity limit can be used to determine the level of osteoporosis that occurs. The higher value of the bone elasticity, the smaller the possibility of osteoporosis.


Author(s):  
Mohammed B. Al-Fadhli

The Planck Legacy recent release revealed a closed and positively curved early universe with a confidence level greater than 99%. In this study, the Friedmann–Lemaîtree–Robertson–Walker (FLRW) metric is enhanced to model early universe plasma, incorporating its reference curvature radius upon the emission of the cosmic microwave background (CMB) and the reference scale factor of the energy flux. The universe evolution from early plasma is modelled utilising quantised spacetime worldlines, where they revealed both positive and negative solutions implying that matter and antimatter in the plasma could be separated by electromagnetic fields and evolved in opposite directions as distinct sides of the universe, corroborating the CMB dipole anisotropy. The model indicates a nascent hyperbolic expansion is followed by a first phase of decelerating expansion during the first 10 Gyr, and then, a second phase of accelerating expansion. The model theoretically resolves the tension in Hubble parameter measurements, with a predicted density at the phase transition of 1.16. Further, it predicts a final time-reversal phase of rapid spatial contraction leading to a Big Crunch, signalling a cyclic universe. Simulations of the quantised spacetime continuum flux through its travel along the predicted worldlines demonstrated the fast-orbital speed of stars resulting from an external momentum exerted on galaxies via the spatial curvature through imaginary time dimension. These findings indicate that early universe plasma could be separated and evolved into distinct sides, collectively and geometrically influencing the universe evolution.


2020 ◽  
Author(s):  
Claudia A.F. Wascher ◽  
Katie Allen ◽  
Georgine Szipl

AbstractCognitive abilities allow animals to navigate through complex, fluctuating environments. For example, behavioural flexibility, which is the ability of an animal to alter their behaviour in response to a novel stimulus or to modify responses to as familiar stimulus or behavioural inhibition, defined as the ability to control a response in order to choose a conflicting course of action. Behavioural flexibility and inhibitory control are expected to vary between and within species based on socio-ecological factors. In the present study we compared performance of a captive group of eight crows, Corvus corone, and ten domestic fowl, Gallus gallus domesticus, in two cognitive tasks, the cylinder task as a test of motor inhibitory control, and reversal learning as a measure of learning ability and behavioural flexibility. Four crows and nine fowl completed the cylinder task, eight crows completed the reversal learning experiment and nine fowl were tested in the acquisition phase, however three fowl did not complete the reversal phase of the experiment due to time constraints. Crows performed significantly better in the cylinder task compared to domestic fowl. In the reversal learning experiment, species did not significantly differ in the number of trials until learning criterion was reached. In crows, individuals who needed less trials to reach learning criterion in the acquisition phase also needed less trials to reach the criterion in the reversal phase. This relationship was lacking in domestic fowl. Performance in the learning task did not correlate with performance in the cylinder task in domestic fowl. Our results show crows to possess significantly better motor-inhibitory control compared to domestic fowl, which could be indicative of this specific aspect of executive functioning to be lacking in domestic fowl. In contrast learning performance in a reversal learning task did not differ between crows and domestic fowl, indicating similar levels of behavioural flexibility in both species.


Author(s):  
Mohammed B. Al-Fadhli

Precise astronomical measurements of the fine structure constant and universe expansion rate have revealed that they vary over specific directions, demonstrating an anisotropic universe. The curvature in complex spacetime can be interpreted as spatial warping evolution along with its travel through the imaginary time dimension. Complex spacetime worldlines of the universe spatial factor evolution through imaginary time are utilised to model universe anisotropy. The worldlines of a positively curved universe revealed both positive and negative solutions, which imply that matter and antimatter could be evolving in opposite directions as distinct sides of the universe, theoretically corroborating the axis of the cosmic microwave background and observed anisotropy. The model indicates that a nascent hyperbolic expansion is followed by a first phase of decelerating spatial expansion during the first 9 Gyr, and then, a second phase of accelerating expansion. The model potentially resolves the tension in Hubble parameter measurements, with a predicted density at the phase transition of 1.12>1. In addition, it predicts a final time-reversal phase of rapid spatial contraction leading to the Big Crunch, signalling a cyclic universe. On spacetime quantum duality, the simulations of the spacetime continuum flux through its travel along with its predicted worldlines demonstrated the fast-orbital speed of stars resulting from an external momentum exerted on galaxies via the spatial curvature through the imaginary time dimension. These findings indicate that antimatter could exist as a distinct side, which influences the universe evolution; physically explaining the effects attributed to dark matter and dark energy.


Author(s):  
Mohammed B. Al-Fadhli

Precise astronomical measurements of the fine structure constant and universe expansion rate have revealed that they vary through specific directions, indicating an anisotropic universe. The curvature in complex spacetime can be interpreted as spatial warping evolution along with its travel through the imaginary time dimension. The complex spacetime worldlines of the universe spatial factor evolution through the imaginary time are utilised to model the universe anisotropy. The worldlines of a positively curved universe revealed both positive and negative solutions, which imply that matter and antimatter could be evolving in opposite directions as distinct universe sides, theoretically corroborating the axis of the cosmic microwave background and observed anisotropy. The model indicates that a nascent hyperbolic expansion is followed by a first phase of decelerating spatial expansion during the first 9 Gyr, and then, a second phase of accelerating expansion. The model potentially resolves the tension in Hubble parameter measurements, with a predicted density at the phase transition of 1.12>1. In addition, it predicts a final time-reversal phase of rapid spatial contraction leading to the Big Crunch, signalling a cyclic universe. On spacetime duality, the simulations of the spacetime continuum flux through its travel along with its predicted worldlines demonstrated the fast-orbital speed of stars resulting from an external momentum exerted on galaxies via the spatial curvature through the imaginary time dimension. These findings indicate that antimatter can exist as a distinct side, which influences the evolution of the universe; physically explaining the effects attributed to dark matter and dark energy.


2020 ◽  
Author(s):  
Carl Harris ◽  
Claudia Aguirre ◽  
Saisriya Kolli ◽  
Kanak Das ◽  
Alicia Izquierdo ◽  
...  

AbstractReversal learning paradigms are widely-used assays of behavioral flexibility with their probabilistic versions being more amenable to studying integration of reward outcomes over time. Prior research suggests differences between initial learning and learning following reversals including higher learning rates, a greater need for inhibitory control, and more perseveration after reversals. However, it is not well-understood what aspects of stimulus-based reversal learning are unique to reversals, and whether and how differences between initial and post-reversal learning depend on reward probability. Here, we used a visual probabilistic discrimination and reversal learning paradigm during which male and female rats selected between a pair of stimuli associated with different reward probabilities. We compared various measures of accuracy, rewards collected, omissions, latencies, win-stay/lose-shift strategies, and indices of perseveration between two different reward probability schedules. We found that discrimination (pre-reversal) and reversal learning are behaviorally more unique than similar: longer choice latencies following incorrect trials, lesser win-stay and lose-shift strategies employed, and more perseveration in early reversal learning. Additionally, fit of choice behavior using reinforcement learning models revealed a lower sensitivity to the difference in subjective reward values (greater exploration) and higher learning rates for the reversal phase. Interestingly, a consistent reward probability group difference emerged with a richer environment associated with longer reward collection latencies than a leaner environment. We also replicated previous reports on sex differences in reversal learning. Future studies should systematically compare the neural correlates of fine-grained behavioral measures to reveal possible dissociations in how the circuitry is recruited in each phase.


Sign in / Sign up

Export Citation Format

Share Document