Graphs to chemical structures. 4: Combinatorial enumeration of planted three-dimensional trees as stereochemical models of monosubstituted alkanes

2006 ◽  
Vol 117 (3) ◽  
pp. 353-370 ◽  
Author(s):  
Shinsaku Fujita
2017 ◽  
Vol 32 (4) ◽  
pp. 429-442 ◽  
Author(s):  
Gang Zhou ◽  
Qianyi Han ◽  
Jun Tai ◽  
Beibei Liu ◽  
Jing Zhang ◽  
...  

Recently, more and more researchers have focused on airway stent applied in tracheomalacia. The airway stents for clinical application were usually manufactured in accordance with a fixed pattern, which were difficult to perfect match with children, especially infants. Digital light procession of light curing acrylate resin implantation showed higher accuracy and printing speed over traditional three-dimensional printing techniques. In this article, a novel personalized airway stent was developed by digital light procession three-dimensional printing and was modified by collagen I extracted from the fish scales. The morphology of the collagen-modified airway stent was examined by scanning electron microscopy, and the chemical structures were examined by attenuated total internal reflectance Fourier transform infrared spectroscopy. The biocompatibility of this synthetic acrylate/collagen composite airway stent was characterized by water contact angle test and cell culture. The results confirmed that the composite airway stent was hydrophilic and non-cytotoxic toward a cultured human bronchial epithelial cell line with good cell viability and show excellent physicochemical and biological properties. In conclusion, this study presented the three-dimensional printing composite acrylate and collagen airway stent may have potential in customized treatment for tracheomalacia.


1988 ◽  
pp. 131-144 ◽  
Author(s):  
Andrew T. Brint ◽  
Eleanor Mitchell ◽  
Peter Willett

Author(s):  
Gary W. Morrow

In addition to simple hydrocarbon structures (alkanes, alkenes, alkynes, and aromatic systems) and alkyl groups (methyl, ethyl, propyl, isopropyl, etc.), this text assumes a familiarity with the most common functional groups associated with organic chemical structures and their basic reactivity patterns. Table 1.1 summarizes the names and structures of some of the more important functional groups we will be dealing with throughout the remainder of the book. It is important to remember that functional groups containing O or N with nonbonding electrons have an affinity for both protic and Lewis acids and are important participators in H-bonding. Groups containing a carbonyl (C=O) function are especially important, as these bonds are strongly polarized (δ+C=Oδ–), the C atom being electron deficient and the O atom electron excessive; this strong polarization is mainly responsible for the familiar reactivity patterns associated with carbonyl compounds. Figure 1.1 depicts the standard classification of isomers in organic chemical structures. Recall that constitutional isomers are compounds with the same molecular formula but different atom connectivity, such as 1-butanol versus 2-butanol. Stereoisomers, on the other hand, are compounds with the same formula and the same atom connectivity, differing from one another only in the three-dimensional orientation of their atoms in space. These are divided into two groups: enantiomers and diastereomers. Enantiomers are nonsuperimposable mirror image molecules whose asymmetry is usually the result of a tetrahedral carbon atom with four different atoms or groups attached to it, as in the 2-butanol enantiomers. Such chiral molecules rotate the plane of polarized light either (+) or (−) and so are said to be optically active. Achiral molecules, such as 1-butanol, do not rotate the plane of polarized light and so are optically inactive. A standard formalism for representation of a chiral center is to use bond line drawings with two of the four atoms or groups lying in the plane of the paper, a third projecting outward (wedge bond), and the fourth projecting inward (dashed bond).


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2416 ◽  
Author(s):  
Bo Young Choi ◽  
Elna Paul Chalisserry ◽  
Myoung Hwan Kim ◽  
Hyun Wook Kang ◽  
Il-Whan Choi ◽  
...  

Recently, astaxanthin, a red lipophilic pigment belonging to the xanthophyllic family of carotenoids, has shown the feasibility of its uses in tissue engineering and regenerative medicine, due to its excellent antioxidant activities and its abilities to enhance the self-renewal potency of stem cells. In this study, we demonstrate the influence of astaxanthin on the proliferation of adipose-derived mesenchymal stem cells in tissue-engineered constructs. The tissue engineered scaffolds were fabricated using photopolymerizable gelatin methacryloyl (GelMA) with different concentrations of astaxanthin. The effects of astaxanthin on cellular proliferation in two-dimensional environments were assessed using alamar blue assay and reverse transcription polymerase chain reaction (RT-PCR). Then, rheological properties, chemical structures and the water absorption of the fabricated astaxanthin-incorporated GelMA hydrogels were characterized using NMR analysis, rheological analysis and a swelling ratio test. Finally, the influence in three-dimensional environments of astaxanthin-incorporated GelMA hydrogels on the proliferative potentials of adipose-derived stem cells was assessed using alamar blue assay and the confocal imaging with Live/dead staining. The experimental results of the study indicate that an addition of astaxanthin promises to induce stem cell potency via proliferation, and that it can be a useful tool for a three-dimensional culture system and various tissue engineering applications.


2014 ◽  
Vol 1663 ◽  
Author(s):  
Garima Thakur ◽  
Kovur Prashanthi ◽  
Thomas Thundat

ABSTRACTSelf–assembly of molecular building blocks provides an interesting route to produce well-defined chemical structures. Tailoring the functionalities on the building blocks and controlling the time of self-assembly could control the properties as well as the structure of the resultant patterns. Spontaneous self-assembly of biomolecules can generate bio-interfaces for myriad of potential applications. Here we report self-assembled patterning of human serum albumin (HSA) protein in to ring structures on a polyethylene glycol (PEG) modified gold surface. The structure of the self-assembled protein molecules and kinetics of structure formation entirely revolved around controlling the nucleation of the base layer. The formation of different sizes of ring patterns is attributed to growth conditions of the PEG islands for bio-conjugation. These assemblies might be beneficial in forming structurally ordered architectures of active proteins such as HSA or other globular proteins.


Sign in / Sign up

Export Citation Format

Share Document