Simultaneous determination of the advanced glycation end product N ɛ-carboxymethyllysine and its precursor, lysine, in exhaled breath condensate using isotope-dilution–hydrophilic-interaction liquid chromatography coupled to tandem mass spectrometry

2007 ◽  
Vol 387 (8) ◽  
pp. 2783-2791 ◽  
Author(s):  
T. Schettgen ◽  
A. Tings ◽  
C. Brodowsky ◽  
A. Müller-Lux ◽  
A. Musiol ◽  
...  
2019 ◽  
Vol 15 (5) ◽  
pp. 535-541 ◽  
Author(s):  
Fariba Pourkarim ◽  
Ali Shayanfar ◽  
Maryam Khoubnasabjafari ◽  
Fariborz Akbarzadeh ◽  
Sanaz Sajedi-Amin ◽  
...  

Background:Developing a simple analysis method for quantification of drug concentration is one of the essential issues in pharmacokinetic and therapeutic drug monitoring studies.Objective:A fast and reliable dispersive liquid-liquid microextraction procedure was employed for preconcentration of verapamil in exhaled breath condensate (EBC) samples and this was followed by the determination with high-performance liquid chromatography-ultraviolet detection.Methods:A reverse-phase high-performance liquid chromatography (RP-HPLC) combined with a dispersive liquid-liquid microextraction method (DLLME) was applied for quantification of verapamil in the EBC samples. The developed method was validated according to FDA guidelines.Results:Under the optimum conditions, the method provided a linear range between 0.07 and 0.8 µg.mL-1 with a coefficient of determination of 0.998. The intra- and inter-day relative standard deviation and relative error values of the method were below 15%, which indicated good precision and accuracy. The proposed method was successfully applied for the analysis of verapamil in two real samples with concentrations of 0.07 and 0.09 µg.mL-1.Conclusion:The established HPLC-UV-DLLME method could be applied for the analysis of verapamil in human EBC samples.


Sign in / Sign up

Export Citation Format

Share Document