scholarly journals Multifractal Eigenfunctions for a Singular Quantum Billiard

Author(s):  
Jonathan P. Keating ◽  
Henrik Ueberschär
Keyword(s):  
2021 ◽  
Author(s):  
Elnaz Rostampour

Abstract We theoretically express quantum transport at Dirac points via graphene quantum billiard as a non-magnetic material to connect metallic leads. Our results indicate that the quantum billiard of graphene is similar to a resonant tunnelling device. The centerpiece size and the Fermi energy of the graphene quantum billiard play an important role in the resonant tunnelling. In graphene, change of carrier density can affect plasmon polaritons. At the Dirac point, the conductivity of graphene depends on the geometry, so that the conduction of the evanescent modes is close to the theoretical value of 4e2/πh (where Planck's constant and the electron charge are denoted by h and e, respectively.). This transport property can be used to justify chaotic quantum systems and ballistic transistors. Our theoretical results demonstrate that the local density of state of the graphene sheet for EL = ER = 0 is larger than EL = ER = t (where EL (ER) is onsite energy of the left (right) metallic lead) unlike the current obtained from the calculations.


2010 ◽  
Vol 19 (14) ◽  
pp. 2305-2310 ◽  
Author(s):  
AXEL KLEINSCHMIDT ◽  
HERMANN NICOLAI

The arithmetic chaos of classical (super)gravity near a spacelike singularity is elevated to the quantum level via the construction of a cosmological quantum billiard system. Its precise formulation, together with its underlying algebraic structure, allows for a general analysis of the wavefunction of the universe near the singularity. We argue that the extension of these results beyond the billiard approximation may provide a concrete mechanism for emergent space as well as new perspectives on several long-standing issues in canonical quantum gravity. The exponentially growing complexity of the underlying symmetry structure could introduce an element of non-computability that effectively "screens" the cosmological singularity from a complete resolution.


1998 ◽  
Vol 57 (5) ◽  
pp. 5397-5403 ◽  
Author(s):  
Gabriel Carlo ◽  
Eduardo Vergini ◽  
Alejandro J. Fendrik

1996 ◽  
Vol 54 (5) ◽  
pp. 5809-5818 ◽  
Author(s):  
D. A. McGrew ◽  
W. Bauer

Sign in / Sign up

Export Citation Format

Share Document