poissonian statistics
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Elnaz Pilehvar ◽  
Ehsan Amooghorban ◽  
Mohammad Kazem Moravvej-Farshi

Abstract We investigate the propagation of a normally incident squeezed coherent state of light through dispersive non-Hermitian optical bilayers, particularly at a frequency that the bilayers hold parity-time (PT) symmetry. To check the realization of PT-symmetry in quantum optics, we reveal how dispersion and loss/gain-induced noises and thermal effects in such bilayers can affect quantum features of the incident light, such as squeezing and sub-Poissonian statistics. The numerical results show thermally-induced noise at room temperature has an insignificant effect on the propagation properties in these non-Hermitian bilayers. Moreover, tuning the bilayers’ loss/gain strength, we show that the transmitted squeezed coherent states through the structure can retain to some extent their nonclassical characteristics, specifically for the frequencies far from the emission frequency of the gain layer. Furthermore, we demonstrate, only below a critical value of gain, quantum optical effective medium theory can correctly predict the propagation of quantized waves in non-Hermitian and PT-symmetric bilayers.


2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Jan Peřina ◽  
Václav Michálek ◽  
Radek Machulka ◽  
Ondřej Haderka

2021 ◽  
pp. 2150167
Author(s):  
Gang Ren ◽  
Jian-Ming Du ◽  
Wen-Hai Zhang

In this paper, using the principle of quantum state superposition, we report a nonclassical quantum state which is constructed by repeatedly operating the number operator on the coherent state. Nonclassical effects of this state are discussed by photon-number distribution, sub-Poissonian statistics, anti-bunching and negativity of Wigner function and squeezing effect. Our work provides an important nonclassical resource, which may be used in quantum communication and quantum optics.


2020 ◽  
Vol 35 (20) ◽  
pp. 2050167 ◽  
Author(s):  
H. Fakhri ◽  
M. Sayyah-Fard

Noncommutative optical squeezed vacuum states are constructed as eigenstates of an appropriate two-photon annihilation operator corresponding to the Biedenharn–Macfarlane [Formula: see text]-oscillator. We consider in details the role of noncommutativity parameter [Formula: see text] on the nonclassical behaviors including quadrature squeezing and sub-Poissonian statistics. Also, we construct the noncommutative photon-added squeezed vacuum states and consider their Hillery-type higher-order squeezing and single-mode noise band.


2020 ◽  
Vol 34 (06) ◽  
pp. 2050075
Author(s):  
Ren-Fei Zheng ◽  
Qi-Hui Jiang ◽  
Lu Zhou ◽  
Wei-Ping Zhang

We consider the model of a weakly driven optical cavity containing two clouds of atomic Bose–Einstein condensates (BECs). Nonclassical photon correlations and correlations between the two atomic BECs are investigated under different cavity conditions including strong atom-field coupling and bad cavity regime. We show that the nonlinear interatom collisional interactions in BEC leads to a significant loss of cavity light coherence. Various types of nonclassical properties are investigated such as sub-Poissonian statistics, antibunching and entanglement. We show that the entanglement can be generated between BECs and the cavity field. The time evolution of entanglement is also numerically studied.


2019 ◽  
Vol 90 (11) ◽  
pp. 113104
Author(s):  
Nijil Lal ◽  
Biveen Shajilal ◽  
Ali Anwar ◽  
Chithrabhanu Perumangatt ◽  
R. P. Singh

2019 ◽  
Vol 34 (23) ◽  
pp. 1950185 ◽  
Author(s):  
Massimo Giovannini

The degree of second-order coherence of the relic gravitons produced from the vacuum is super-Poissonian and larger than in the case of a chaotic source characterized by a Bose–Einstein distribution. If the initial state does not minimize the tensor Hamiltonian and has a dispersion smaller than its averaged multiplicity, the overall statistics is by definition sub-Poissonian. Depending on the nature of the sub-Poissonian initial state, the final degree of second-order coherence of the quanta produced by stimulated emission may diminish (possibly even below the characteristic value of a chaotic source) but it always remains larger than one (i.e. super-Poissonian). When the initial statistics is Poissonian (like in the case of a coherent state or for a mixed state weighted by a Poisson distribution) the degree of second-order coherence of the produced gravitons is still super-Poissonian. Even though the quantum origin of the relic gravitons inside the Hubble radius can be effectively disambiguated by looking at the corresponding Hanbury Brown–Twiss correlations, the final distributions caused by different initial states maintain their super-Poissonian character which cannot be altered.


2019 ◽  
Vol 34 (14) ◽  
pp. 1950104 ◽  
Author(s):  
A. Dehghani ◽  
B. Mojaveri ◽  
S. Amiri Faseghandis

Using the parity deformed Heisenberg algebra (RDHA), we first establish associated coherent states (RDCSs) for a pseudo-harmonic oscillator (PHO) system that are defined as eigenstates of a deformed annihilation operator. Such states can be expressed as superposition of an even and odd Wigner cat states.[Formula: see text] The RDCSs minimize a corresponding uncertainty relation, and resolve an identity condition through a positive definite measure which is explicitly derived. We introduce a class of single-mode excited coherent states (PARDCS) of the PHO through “m” times application of deformed creation operators to RDCS. For the states thus constructed, we analyze their statistical properties such as squeezing and sub-Poissonian statistics as well as their uncertainty relations.


2018 ◽  
Vol 32 (21) ◽  
pp. 1850222 ◽  
Author(s):  
C. J. S. Ferreira ◽  
C. Valverde ◽  
B. Baseia

We investigate statistical properties of a single mode field that interacts with a two-level atom inside an optical cavity. The whole system is described by dispersive Jaynes–Cummings Hamiltonian, both subsystems starting from superpositions of two states. We consider properties of the field states only at the moment each atom is detected in the ground state immediately after it has crossed the cavity. This allows us to get a list of atomic velocities corresponding to field states with preselected properties. The scheme is exemplified for excitation inversion and sub-Poissonian statistics.


Sign in / Sign up

Export Citation Format

Share Document