Non-Poissonian statistics in an optical analog of quantum billiard with perfectly square boundaries

2010 ◽  
Vol 374 (6) ◽  
pp. 896-900
Author(s):  
I. Babushkin
Author(s):  
J. C. H. Spence ◽  
X. Zhang ◽  
J. M. Zuo ◽  
U. Weierstall ◽  
E. Munro ◽  
...  

The limited penetration of the low-voltage point-projection microscope (PPM) may be avoided by using the reflection geometry to image clean surfaces in ultra-high vacuum. Figure 1 shows the geometry we are using for experimental point-reflection (PRM) imaging. A nanotip field-emitter at about 100 - 1000 volts is placed above a grounded atomically flat crystalline substrate, which acts as a mirror and anode. Since most of the potential is dropped very close to the tip, trajectories are reasonably straight if the sample is in the far-field of the tip. A resolution of 10 nm is sought initially. The specular divergent RHEED beam then defines a virtual source S' below the surface, resulting in an equivalent arrangement to PPM (or defocused CBED). Shadow images of surface asperities are then expected on the distant detector, out of focus by the tip-to-sample distance. These images can be interpreted as in-line electron holograms and so reconstructed (see X. Zhang et al, these proceedings). Optical analog experiments confirm the absence of foreshortening when the detector is parallel to the surface.


Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 38
Author(s):  
Moshe Nazarathy ◽  
Ioannis Tomkos

In optical transmitters generating multi-level constellations, optical modulators are preceded by Electronic Digital-to-Analog-Converters (eDAC). It is advantageous to use eDAC-free Optical Analog to Digital Converters (oDAC) to directly convert digital bitstreams into multilevel PAM/QAM optical signals. State-of-the-art oDACs are based on Segmented Mach-Zehnder-Modulators (SEMZM) using multiple modulation segments strung along the MZM waveguides to serially accumulate binary-modulated optical phases. Here we aim to assess performance limits of the Serial oDACs (SEMZM) and introduce an alternative improved Multi-Parallel oDAC (MPoDAC) architecture, in particular based on arraying multiple binary-driven MZMs in parallel: Multi-parallel MZM (MPMZM) oDAC. We develop generic methodologies of oDAC specification and optimization encompassing both SEMZM and MPMZM options in Direct-Detection (DD) and Coherent-Detection (COH) implementations. We quantify and compare intrinsic performance limits of the various serial/parallel DD/COH subclasses for general constellation orders, comparing with the scant prior-work on the multi-parallel option. A key finding: COH-MPMZM is the only class synthesizing ‘perfect’ (equi-spaced max-full-scale) constellations while maximizing energy-efficiency-SEMZM/MPMZM for DD are less accurate when maximal energy-efficiency is required. In particular, we introduce multiple variants of PAM4|8 DD and QAM16|64 COH MPMZMs, working out their accuracy vs. energy-efficiency-and-complexity tradeoffs, establishing their format-reconfigurability (format-flexible switching of constellation order and/or DD/COH).


Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 52
Author(s):  
Yue Liu ◽  
Jifang Qiu ◽  
Chang Liu ◽  
Yan He ◽  
Ran Tao ◽  
...  

An optical analog-to-digital converter (OADC) scheme with enhanced bit resolution by using a multimode interference (MMI) coupler as optical quantization is proposed. The mathematical simulation model was established to verify the feasibility and to investigate the robustness of the scheme. Simulation results show that 20 quantization levels (corresponding to 4.32 of effective number of bits (ENOB)) are realized by using only 6 channels, which indicates that the scheme requires much fewer quantization channels or modulators to realize the same amount of ENOB. The scheme is robust and potential for integration.


2017 ◽  
Author(s):  
Evgenii S. Kolodeznyi ◽  
Innokenty I. Novikov ◽  
Andrey V. Babichev ◽  
Alexander S. Kurochkin ◽  
Andrey G. Gladyshev ◽  
...  

2019 ◽  
Vol 34 (23) ◽  
pp. 1950185 ◽  
Author(s):  
Massimo Giovannini

The degree of second-order coherence of the relic gravitons produced from the vacuum is super-Poissonian and larger than in the case of a chaotic source characterized by a Bose–Einstein distribution. If the initial state does not minimize the tensor Hamiltonian and has a dispersion smaller than its averaged multiplicity, the overall statistics is by definition sub-Poissonian. Depending on the nature of the sub-Poissonian initial state, the final degree of second-order coherence of the quanta produced by stimulated emission may diminish (possibly even below the characteristic value of a chaotic source) but it always remains larger than one (i.e. super-Poissonian). When the initial statistics is Poissonian (like in the case of a coherent state or for a mixed state weighted by a Poisson distribution) the degree of second-order coherence of the produced gravitons is still super-Poissonian. Even though the quantum origin of the relic gravitons inside the Hubble radius can be effectively disambiguated by looking at the corresponding Hanbury Brown–Twiss correlations, the final distributions caused by different initial states maintain their super-Poissonian character which cannot be altered.


1970 ◽  
Vol 9 (11) ◽  
pp. 2459 ◽  
Author(s):  
W. Swindell

Sign in / Sign up

Export Citation Format

Share Document