scholarly journals Transfer Operators and Limit Laws for Typical Cocycles

Author(s):  
Kiho Park ◽  
Mark Piraino
2007 ◽  
Vol 44 (02) ◽  
pp. 492-505
Author(s):  
M. Molina ◽  
M. Mota ◽  
A. Ramos

We investigate the probabilistic evolution of a near-critical bisexual branching process with mating depending on the number of couples in the population. We determine sufficient conditions which guarantee either the almost sure extinction of such a process or its survival with positive probability. We also establish some limiting results concerning the sequences of couples, females, and males, suitably normalized. In particular, gamma, normal, and degenerate distributions are proved to be limit laws. The results also hold for bisexual Bienaymé–Galton–Watson processes, and can be adapted to other classes of near-critical bisexual branching processes.


2017 ◽  
Vol 60 (2) ◽  
pp. 411-421
Author(s):  
Luchezar Stoyanov

AbstractWe prove a comprehensive version of the Ruelle–Perron–Frobenius Theorem with explicit estimates of the spectral radius of the Ruelle transfer operator and various other quantities related to spectral properties of this operator. The novelty here is that the Hölder constant of the function generating the operator appears only polynomially, not exponentially as in previously known estimates.


2021 ◽  
Vol 183 (2) ◽  
Author(s):  
Henk Bruin

AbstractWe show that certain billiard flows on planar billiard tables with horns can be modeled as suspension flows over Young towers (Ann. Math. 147:585–650, 1998) with exponential tails. This implies exponential decay of correlations for the billiard map. Because the height function of the suspension flow itself is polynomial when the horns are Torricelli-like trumpets, one can derive Limit Laws for the billiard flow, including Stable Limits if the parameter of the Torricelli trumpet is chosen in (1, 2).


2012 ◽  
Vol 22 (11) ◽  
pp. 1250261 ◽  
Author(s):  
ERIK M. BOLLT

Synchronization of chaotic oscillators has become well characterized by errors which shrink relative to a synchronization manifold. This manifold is the identity function in the case of identical systems, or some other slow manifold in the case of generalized synchronizaton in the case of nonidentical components. On the other hand, since many decades beginning with the Smale horseshoe, chaotic oscillators can be well understood in terms of symbolic dynamics as information producing processes. We study here the synchronization of a pair of chaotic oscillators as a process for sharing information bearing bits transferred between each other, by measuring the transfer entropy tracked as the global system transitions to the synchronization state. Further, we present for the first time the notion of transfer entropy in the measure theoretic setting of transfer operators.


2017 ◽  
Vol 54 (2) ◽  
pp. 444-461 ◽  
Author(s):  
Fangjun Xu

Abstract We prove a second-order limit law for additive functionals of a d-dimensional fractional Brownian motion with Hurst index H = 1 / d, using the method of moments and extending the Kallianpur–Robbins law, and then give a functional version of this result. That is, we generalize it to the convergence of the finite-dimensional distributions for corresponding stochastic processes.


Sign in / Sign up

Export Citation Format

Share Document