Effects of ISI and stimulus probability on event-related go/nogo potentials after somatosensory stimulation

2004 ◽  
Vol 162 (3) ◽  
pp. 293-299 ◽  
Author(s):  
Hiroki Nakata ◽  
Koji Inui ◽  
Toshiaki Wasaka ◽  
Yohei Tamura ◽  
Tetsuo Kida ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koya Yamashiro ◽  
Yudai Yamazaki ◽  
Kanako Siiya ◽  
Koyuki Ikarashi ◽  
Yasuhiro Baba ◽  
...  

AbstractLong-term skills training is known to induce neuroplastic alterations, but it is still debated whether these changes are always modality-specific or can be supramodal components. To address this issue, we compared finger-targeted somatosensory-evoked and auditory-evoked potentials under both Go (response) and Nogo (response inhibition) conditions between 10 baseball players, who require fine hand/digit skills and response inhibition, to 12 matched track and field (T&F) athletes. Electroencephalograms were obtained at nine cortical electrode positions. Go potentials, Nogo potentials, and Go/Nogo reaction time (Go/Nogo RT) were measured during equiprobable somatosensory and auditory Go/Nogo paradigms. Nogo potentials were obtained by subtracting Go trial from Nogo trial responses. Somatosensory Go P100 latency and Go/Nogo RT were significantly shorter in the baseball group than the T&F group, while auditory Go N100 latency and Go/Nogo RT did not differ between groups. Additionally, somatosensory subtracted Nogo N2 latency was significantly shorter in the baseball group than the T&F group. Furthermore, there were significant positive correlations between somatosensory Go/Nogo RT and both Go P100 latency and subtracted Nogo N2 latency, but no significant correlations among auditory responses. We speculate that long-term skills training induce predominantly modality-specific neuroplastic changes that can improve both execution and response inhibition.


2019 ◽  
Vol 40 (4) ◽  
pp. 808-822 ◽  
Author(s):  
Maximilian Böhm ◽  
David Y Chung ◽  
Carlos A Gómez ◽  
Tao Qin ◽  
Tsubasa Takizawa ◽  
...  

Neurovascular coupling is a fundamental response that links activity to perfusion. Traditional paradigms of neurovascular coupling utilize somatosensory stimulation to activate the primary sensory cortex through subcortical relays. Therefore, examination of neurovascular coupling in disease models can be confounded if the disease process affects these multisynaptic pathways. Optogenetic stimulation is an alternative to directly activate neurons, bypassing the subcortical relays. We employed minimally invasive optogenetic cortical activation through intact skull in Thy1-channelrhodopsin-2 transgenic mice, examined the blood flow changes using laser speckle imaging, and related these to evoked electrophysiological activity. Our data show that optogenetic activation of barrel cortex triggers intensity- and frequency-dependent hyperemia both locally within the barrel cortex (>50% CBF increase), and remotely within the ipsilateral motor cortex (>30% CBF increase). Intriguingly, activation of the barrel cortex causes a small (∼10%) but reproducible hypoperfusion within the contralateral barrel cortex, electrophysiologically linked to transhemispheric inhibition. Cortical spreading depression, known to cause neurovascular uncoupling, diminishes optogenetic hyperemia by more than 50% for up to an hour despite rapid recovery of evoked electrophysiological activity, recapitulating a unique feature of physiological neurovascular coupling. Altogether, these data establish a minimally invasive paradigm to investigate neurovascular coupling for longitudinal characterization of cerebrovascular pathologies.


2004 ◽  
Vol 159 (2) ◽  
pp. 268-272 ◽  
Author(s):  
Michael J. Koval ◽  
Kristen A. Ford ◽  
Stefan Everling

Sign in / Sign up

Export Citation Format

Share Document