scholarly journals Differences in corticospinal excitability to the biceps brachii between arm cycling and tonic contraction are not evident at the immediate onset of movement

2016 ◽  
Vol 234 (8) ◽  
pp. 2339-2349 ◽  
Author(s):  
Davis A. Forman ◽  
Devin T. G. Philpott ◽  
Duane C. Button ◽  
Kevin E. Power
Motor Control ◽  
2015 ◽  
Vol 19 (3) ◽  
pp. 223-241 ◽  
Author(s):  
David B. Copithorne ◽  
Davis A. Forman ◽  
Kevin E. Power

The purpose of this study was to determine if supraspinal and/or spinal motoneuron excitability of the biceps brachii were differentially modulated before: 1) arm cycling and 2) an intensity-matched tonic contraction. Surface EMG recordings of motor evoked potentials (MEPs) and cervicomedullary motor evoked potentials (CMEPs) were used to assess supraspinal and spinal motoneuron excitability, respectively. MEP amplitudes were larger and onset latencies shorter, before arm cycling and tonic contraction when compared with rest with no intent to move, but with no difference between motor outputs. CMEP amplitudes and onset latencies remained unchanged before cycling and tonic contraction compared with rest. Premovement enhancement of corticospinal excitability was due to an increase in supraspinal excitability that was not task-dependent. This suggests that a common neural drive is used to initiate both motor outputs with task-dependent changes in neural excitability only being evident once the motor outputs have begun.


2014 ◽  
Vol 112 (5) ◽  
pp. 1142-1151 ◽  
Author(s):  
Davis Forman ◽  
Amita Raj ◽  
Duane C. Button ◽  
Kevin E. Power

Human studies have not assessed corticospinal excitability of an upper-limb prime mover during arm cycling. The purpose of the present study was to determine whether supraspinal and/or spinal motoneuron excitability of the biceps brachii was different between arm cycling and an intensity-matched tonic contraction. We hypothesized that spinal motoneuron excitability would be higher during arm cycling than an intensity-matched tonic contraction. Supraspinal and spinal motoneuron excitability were assessed using transcranial magnetic stimulation (TMS) of the motor cortex and transmastoid electrical stimulation (TMES) of the corticospinal tract, respectively. TMS-induced motor-evoked potentials (MEPs) and TMES-induced cervicomedullary-evoked potentials (CMEPs) were assessed at three separate positions (3, 6, and 12 o'clock relative to a clock face) during arm cycling and an intensity-matched tonic contraction. MEP amplitudes were 7.2 and 8.8% maximum amplitude of the compound muscle action potential (Mmax) larger during arm cycling compared with a tonic contraction at the 3 ( P < 0.001) and 6 o'clock ( P < 0.001) positions, respectively. There was no difference between tasks during elbow extension (12 o'clock). CMEP amplitudes were 5.2% Mmax larger during arm cycling compared with a tonic contraction at the 3 o'clock position ( P < 0.001) with no differences seen at midflexion (6 o'clock) or extension (12 o'clock). The data indicate an increase in the excitability of corticospinal neurons, which ultimately project to biceps brachii during the elbow flexion portion of arm cycling, and increased spinal motoneuron excitability at the onset of elbow flexion during arm cycling. We conclude that supraspinal and spinal motoneuron excitability are phase- and task-dependent.


2013 ◽  
Vol 38 (11) ◽  
pp. 1154-1161 ◽  
Author(s):  
Kevin E. Power ◽  
David B. Copithorne

Human studies have not assessed supraspinal or spinal motoneurone excitability in the quiescent state prior to a rhythmic and alternating cyclical motor output. The purpose of the current study was to determine whether supraspinal and (or) spinal motoneurone excitability was modulated in humans prior to arm cycling when compared with rest with no intention to move. We hypothesized that corticospinal excitability would be enhanced prior to arm cycling due, in part, to increased spinal motoneurone excitability. Supraspinal and spinal motoneurone excitability were assessed via transcranial magnetic stimulation (TMS) of the motor cortex and transmastoid stimulation of the corticospinal tract, respectively. Surface electromyography recordings of TMS motor evoked potentials (MEPs) and cervicomedullary MEPs (CMEPs) were made from the relaxed biceps brachii muscle prior to rhythmic arm cycling and at rest with no intention to move. The amplitude of the MEPs was greater (mean increase: +9.8% of maximal M wave; p = 0.006) and their onset latencies were shorter (mean decrease: –1.5 ms; p < 0.05) prior to cycling when compared with rest. The amplitudes of the CMEPs at any of 3 stimulation intensities were not different between conditions. We conclude that premovement enhancement of corticospinal excitability is greater prior to arm cycling than at rest because of increases in supraspinal but not spinal motoneurone excitability.


2019 ◽  
Vol 9 (2) ◽  
pp. 41 ◽  
Author(s):  
Evan Lockyer ◽  
Anna Nippard ◽  
Kaitlyn Kean ◽  
Nicole Hollohan ◽  
Duane Button ◽  
...  

Background: The present study compared corticospinal excitability to the biceps brachii muscle during arm cycling at a self-selected and a fixed cadence (SSC and FC, respectively). We hypothesized that corticospinal excitability would not be different between the two conditions. Methods: The SSC was initially performed and the cycling cadence was recorded every 5 s for one minute. The average cadence of the SSC cycling trial was then used as a target for the FC of cycling that the participants were instructed to maintain. The motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation (TMS) of the motor cortex were recorded from the biceps brachii during each trial of SSC and FC arm cycling. Results: Corticospinal excitability, as assessed via normalized MEP amplitudes (MEPs were made relative to a maximal compound muscle action potential), was not different between groups. Conclusions: Focusing on maintaining a fixed cadence during arm cycling does not influence corticospinal excitability, as assessed via TMS-evoked MEPs.


2016 ◽  
Vol 41 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Gregory E.P. Pearcey ◽  
David J. Bradbury-Squires ◽  
Michael Monks ◽  
Devin Philpott ◽  
Kevin E. Power ◽  
...  

We examined the effects of arm-cycling sprints on maximal voluntary elbow flexion and corticospinal excitability of the biceps brachii. Recreationally trained athletes performed ten 10-s arm-cycling sprints interspersed with 150 s of rest in 2 separate experiments. In experiment A (n = 12), maximal voluntary contraction (MVC) force of the elbow flexors was measured at pre-sprint 1, post-sprint 5, and post-sprint 10. Participants received electrical motor point stimulation during and following the elbow flexor MVCs to estimate voluntary activation (VA). In experiment B (n = 7 participants from experiment A), supraspinal and spinal excitability of the biceps brachii were measured via transcranial magnetic and transmastoid electrical stimulation that produced motor evoked potentials (MEPs) and cervicomedullary motor evoked potentials (CMEPs), respectively, during a 5% isometric MVC at pre-sprint 1, post-sprint 1, post-sprint 5, and post-sprint 10. In experiment A, mean power output, MVC force, potentiated twitch force, and VA decreased 13.1% (p < 0.001), 8.7% (p = 0.036), 27.6% (p = 0.003), and 5.6% (p = 0.037), respectively, from pre-sprint 1 to post-sprint 10. In experiment B, (i) MEPs decreased 42.1% (p = 0.002) from pre-sprint 1 to post-sprint 5 and increased 40.1% (p = 0.038) from post-sprint 5 to post-sprint 10 and (ii) CMEPs increased 28.5% (p = 0.045) from post-sprint 1 to post-sprint 10. Overall, arm-cycling sprints caused neuromuscular fatigue of the elbow flexors, which corresponded with decreased supraspinal and increased spinal excitability of the biceps brachii. The different post-sprint effects on supraspinal and spinal excitability may illustrate an inhibitory effect on supraspinal drive that reduces motor output and, therefore, decreases arm-cycling sprint performance.


2020 ◽  
Vol 45 (1) ◽  
pp. 72-80
Author(s):  
Anna. P. Nippard ◽  
Evan. J. Lockyer ◽  
Duane. C. Button ◽  
Kevin. E. Power

The purpose of this study was to evaluate corticospinal excitability to the biceps and triceps brachii during forward (FWD) and backward (BWD) arm cycling. Corticospinal and spinal excitability were assessed using transcranial magnetic stimulation and transmastoid electrical stimulation to elicit motor evoked potentials (MEPs) and cervicomedullary evoked potentials (CMEPs), respectively. MEPs and CMEPs were recorded from the biceps and triceps brachii during FWD and BWD arm cycling at 2 positions, 6 and 12 o’clock. The 6 o’clock position corresponded to mid-elbow flexion and extension during FWD and BWD cycling, respectively, while 12 o’clock corresponded to mid-elbow extension and flexion during FWD and BWD cycling, respectively. During the flexion phase, MEP and CMEP amplitudes of the biceps brachii were higher during FWD cycling. However, during the extension phase, MEP and CMEP amplitudes were higher during BWD cycling. For the triceps brachii, MEP amplitudes were higher during FWD cycling regardless of phase. However, CMEP amplitudes were phase-dependent. During the flexion phase, CMEPs of the triceps brachii were higher during FWD cycling compared with BWD, but during the extension phase CMEPs were higher during BWD cycling compared with FWD. The data suggest that corticospinal and spinal excitability to the biceps brachii is phase- and direction-dependent. In the triceps brachii, spinal, but not corticospinal, excitability is phase-dependent when comparing FWD and BWD cycling. Novelty This is the first study to assess corticospinal excitability during FWD and BWD locomotor output. Corticospinal excitability during arm cycling depends on the direction, phase, and muscle being assessed.


2006 ◽  
Vol 95 (2) ◽  
pp. 914-921 ◽  
Author(s):  
Timothy J. Carroll ◽  
Evan R. L. Baldwin ◽  
David F. Collins ◽  
E. Paul Zehr

Humans perform rhythmic, locomotor movements with the arms and legs every day. Studies using reflexes to probe the functional role of the CNS suggest that spinal circuits are an important part of the neural control system for rhythmic arm cycling and walking. Here, by studying motor-evoked potentials (MEPs) in response to transcranial magnetic stimulation (TMS) of the motor cortex, and H-reflexes induced by electrical stimulation of peripheral nerves, we show a reduction in corticospinal excitability during rhythmic arm movement compared with tonic, voluntary contraction. Responses were compared between arm cycling and tonic contraction at four positions, while participants generated similar levels of muscle activity. Both H-reflexes and MEPs were significantly smaller during arm cycling than during tonic contraction at the midpoint of arm flexion ( F = 13.51, P = 0.006; F = 11.83, P = 0.009). Subthreshold TMS significantly facilitated the FCR H-reflex during tonic contractions, but did not significantly modulate H-reflex amplitude during arm cycling. The data indicate a reduction in the responsiveness of cells constituting the fast, monosynaptic, corticospinal pathway during arm cycling and suggest that the motor cortex may contribute less to motor drive during rhythmic arm movement than during tonic, voluntary contraction. Our results are consistent with the idea that subcortical regions contribute to the control of rhythmic arm movements despite highly developed corticospinal projections to the human upper limb.


2019 ◽  
Author(s):  
Anna Nippard ◽  
Evan Lockyer ◽  
Duane Button ◽  
Kevin Power

The purpose of this study was to evaluate corticospinal excitability to the biceps and triceps brachii during forward (FWD) and backward (BWD) arm cycling. Corticospinal and spinal excitability were assessed using transcranial magnetic stimulation (TMS) and transmastoid electrical stimulation (TMES) to elicit motor evoked potentials (MEPs) and cervicomedullary evoked potentials (CMEPs), respectively. MEPs and CMEPs were recorded from the biceps and triceps brachii during FWD and BWD arm cycling at two positions, 6 and 12 o’clock. The 6 o’clock position corresponded to mid-elbow flexion and extension during FWD and BWD cycling, respectively, while 12 o’clock corresponded to mid-elbow extension and flexion during FWD and BWD cycling, respectively. During the flexion phase, MEP and CMEP amplitudes of the biceps brachii were higher during FWD than BWD cycling. However, during the extension phase, MEP and CMEP amplitudes were higher during BWD than FWD cycling. For the triceps brachii, MEP amplitudes were higher during FWD cycling compared to BWD regardless of phase. However, CMEP amplitudes were phase-dependent. During the flexion phase, CMEPs of the triceps brachii were higher during FWD cycling compared to BWD, but during the extension phase CMEPs were higher during BWD cycling compared to FWD. The data suggests that corticospinal and spinal excitability to the biceps brachii is phase- and direction-dependent. In the triceps brachii, spinal, but not corticospinal, excitability is phase-dependent when comparing FWD and BWD cycling.


Author(s):  
Evan J. Lockyer ◽  
Anna P. Nippard ◽  
Kaitlyn Kean ◽  
Nicole Hollohan ◽  
Duane C. Button ◽  
...  

Background: The present study compared corticospinal excitability to the biceps brachii muscle during arm cycling at a self-selected and a fixed cadence (SSC and FC, respectively). We hypothesized that corticospinal excitability would not be different between the two conditions. Methods: The SSC was initially performed and the cycling cadence was recorded every 5 seconds for one minute. The average cadence of the SSC cycling trial was then used as a target for FC of cycling that the participants were instructed to maintain. Motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation (TMS) of the motor cortex were recorded from the biceps brachii during each trial of SSC and FC arm cycling. Results: Corticospinal excitability as assessed via normalized MEP amplitudes (MEPs were made relative to a maximal compound muscle action potential) were not different between groups. Conclusions: Focusing on maintaining a FC cadence during arm cycling does not influence corticospinal excitability as assessed via TMS-evoked MEPs.


Sign in / Sign up

Export Citation Format

Share Document