Premovement Changes in Corticospinal Excitability of the Biceps Brachii are Not Different Between Arm Cycling and an Intensity-Matched Tonic Contraction

Motor Control ◽  
2015 ◽  
Vol 19 (3) ◽  
pp. 223-241 ◽  
Author(s):  
David B. Copithorne ◽  
Davis A. Forman ◽  
Kevin E. Power

The purpose of this study was to determine if supraspinal and/or spinal motoneuron excitability of the biceps brachii were differentially modulated before: 1) arm cycling and 2) an intensity-matched tonic contraction. Surface EMG recordings of motor evoked potentials (MEPs) and cervicomedullary motor evoked potentials (CMEPs) were used to assess supraspinal and spinal motoneuron excitability, respectively. MEP amplitudes were larger and onset latencies shorter, before arm cycling and tonic contraction when compared with rest with no intent to move, but with no difference between motor outputs. CMEP amplitudes and onset latencies remained unchanged before cycling and tonic contraction compared with rest. Premovement enhancement of corticospinal excitability was due to an increase in supraspinal excitability that was not task-dependent. This suggests that a common neural drive is used to initiate both motor outputs with task-dependent changes in neural excitability only being evident once the motor outputs have begun.

2014 ◽  
Vol 112 (5) ◽  
pp. 1142-1151 ◽  
Author(s):  
Davis Forman ◽  
Amita Raj ◽  
Duane C. Button ◽  
Kevin E. Power

Human studies have not assessed corticospinal excitability of an upper-limb prime mover during arm cycling. The purpose of the present study was to determine whether supraspinal and/or spinal motoneuron excitability of the biceps brachii was different between arm cycling and an intensity-matched tonic contraction. We hypothesized that spinal motoneuron excitability would be higher during arm cycling than an intensity-matched tonic contraction. Supraspinal and spinal motoneuron excitability were assessed using transcranial magnetic stimulation (TMS) of the motor cortex and transmastoid electrical stimulation (TMES) of the corticospinal tract, respectively. TMS-induced motor-evoked potentials (MEPs) and TMES-induced cervicomedullary-evoked potentials (CMEPs) were assessed at three separate positions (3, 6, and 12 o'clock relative to a clock face) during arm cycling and an intensity-matched tonic contraction. MEP amplitudes were 7.2 and 8.8% maximum amplitude of the compound muscle action potential (Mmax) larger during arm cycling compared with a tonic contraction at the 3 ( P < 0.001) and 6 o'clock ( P < 0.001) positions, respectively. There was no difference between tasks during elbow extension (12 o'clock). CMEP amplitudes were 5.2% Mmax larger during arm cycling compared with a tonic contraction at the 3 o'clock position ( P < 0.001) with no differences seen at midflexion (6 o'clock) or extension (12 o'clock). The data indicate an increase in the excitability of corticospinal neurons, which ultimately project to biceps brachii during the elbow flexion portion of arm cycling, and increased spinal motoneuron excitability at the onset of elbow flexion during arm cycling. We conclude that supraspinal and spinal motoneuron excitability are phase- and task-dependent.


2016 ◽  
Vol 41 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Gregory E.P. Pearcey ◽  
David J. Bradbury-Squires ◽  
Michael Monks ◽  
Devin Philpott ◽  
Kevin E. Power ◽  
...  

We examined the effects of arm-cycling sprints on maximal voluntary elbow flexion and corticospinal excitability of the biceps brachii. Recreationally trained athletes performed ten 10-s arm-cycling sprints interspersed with 150 s of rest in 2 separate experiments. In experiment A (n = 12), maximal voluntary contraction (MVC) force of the elbow flexors was measured at pre-sprint 1, post-sprint 5, and post-sprint 10. Participants received electrical motor point stimulation during and following the elbow flexor MVCs to estimate voluntary activation (VA). In experiment B (n = 7 participants from experiment A), supraspinal and spinal excitability of the biceps brachii were measured via transcranial magnetic and transmastoid electrical stimulation that produced motor evoked potentials (MEPs) and cervicomedullary motor evoked potentials (CMEPs), respectively, during a 5% isometric MVC at pre-sprint 1, post-sprint 1, post-sprint 5, and post-sprint 10. In experiment A, mean power output, MVC force, potentiated twitch force, and VA decreased 13.1% (p < 0.001), 8.7% (p = 0.036), 27.6% (p = 0.003), and 5.6% (p = 0.037), respectively, from pre-sprint 1 to post-sprint 10. In experiment B, (i) MEPs decreased 42.1% (p = 0.002) from pre-sprint 1 to post-sprint 5 and increased 40.1% (p = 0.038) from post-sprint 5 to post-sprint 10 and (ii) CMEPs increased 28.5% (p = 0.045) from post-sprint 1 to post-sprint 10. Overall, arm-cycling sprints caused neuromuscular fatigue of the elbow flexors, which corresponded with decreased supraspinal and increased spinal excitability of the biceps brachii. The different post-sprint effects on supraspinal and spinal excitability may illustrate an inhibitory effect on supraspinal drive that reduces motor output and, therefore, decreases arm-cycling sprint performance.


2020 ◽  
Vol 45 (1) ◽  
pp. 72-80
Author(s):  
Anna. P. Nippard ◽  
Evan. J. Lockyer ◽  
Duane. C. Button ◽  
Kevin. E. Power

The purpose of this study was to evaluate corticospinal excitability to the biceps and triceps brachii during forward (FWD) and backward (BWD) arm cycling. Corticospinal and spinal excitability were assessed using transcranial magnetic stimulation and transmastoid electrical stimulation to elicit motor evoked potentials (MEPs) and cervicomedullary evoked potentials (CMEPs), respectively. MEPs and CMEPs were recorded from the biceps and triceps brachii during FWD and BWD arm cycling at 2 positions, 6 and 12 o’clock. The 6 o’clock position corresponded to mid-elbow flexion and extension during FWD and BWD cycling, respectively, while 12 o’clock corresponded to mid-elbow extension and flexion during FWD and BWD cycling, respectively. During the flexion phase, MEP and CMEP amplitudes of the biceps brachii were higher during FWD cycling. However, during the extension phase, MEP and CMEP amplitudes were higher during BWD cycling. For the triceps brachii, MEP amplitudes were higher during FWD cycling regardless of phase. However, CMEP amplitudes were phase-dependent. During the flexion phase, CMEPs of the triceps brachii were higher during FWD cycling compared with BWD, but during the extension phase CMEPs were higher during BWD cycling compared with FWD. The data suggest that corticospinal and spinal excitability to the biceps brachii is phase- and direction-dependent. In the triceps brachii, spinal, but not corticospinal, excitability is phase-dependent when comparing FWD and BWD cycling. Novelty This is the first study to assess corticospinal excitability during FWD and BWD locomotor output. Corticospinal excitability during arm cycling depends on the direction, phase, and muscle being assessed.


2019 ◽  
Author(s):  
Anna Nippard ◽  
Evan Lockyer ◽  
Duane Button ◽  
Kevin Power

The purpose of this study was to evaluate corticospinal excitability to the biceps and triceps brachii during forward (FWD) and backward (BWD) arm cycling. Corticospinal and spinal excitability were assessed using transcranial magnetic stimulation (TMS) and transmastoid electrical stimulation (TMES) to elicit motor evoked potentials (MEPs) and cervicomedullary evoked potentials (CMEPs), respectively. MEPs and CMEPs were recorded from the biceps and triceps brachii during FWD and BWD arm cycling at two positions, 6 and 12 o’clock. The 6 o’clock position corresponded to mid-elbow flexion and extension during FWD and BWD cycling, respectively, while 12 o’clock corresponded to mid-elbow extension and flexion during FWD and BWD cycling, respectively. During the flexion phase, MEP and CMEP amplitudes of the biceps brachii were higher during FWD than BWD cycling. However, during the extension phase, MEP and CMEP amplitudes were higher during BWD than FWD cycling. For the triceps brachii, MEP amplitudes were higher during FWD cycling compared to BWD regardless of phase. However, CMEP amplitudes were phase-dependent. During the flexion phase, CMEPs of the triceps brachii were higher during FWD cycling compared to BWD, but during the extension phase CMEPs were higher during BWD cycling compared to FWD. The data suggests that corticospinal and spinal excitability to the biceps brachii is phase- and direction-dependent. In the triceps brachii, spinal, but not corticospinal, excitability is phase-dependent when comparing FWD and BWD cycling.


2013 ◽  
Vol 38 (11) ◽  
pp. 1154-1161 ◽  
Author(s):  
Kevin E. Power ◽  
David B. Copithorne

Human studies have not assessed supraspinal or spinal motoneurone excitability in the quiescent state prior to a rhythmic and alternating cyclical motor output. The purpose of the current study was to determine whether supraspinal and (or) spinal motoneurone excitability was modulated in humans prior to arm cycling when compared with rest with no intention to move. We hypothesized that corticospinal excitability would be enhanced prior to arm cycling due, in part, to increased spinal motoneurone excitability. Supraspinal and spinal motoneurone excitability were assessed via transcranial magnetic stimulation (TMS) of the motor cortex and transmastoid stimulation of the corticospinal tract, respectively. Surface electromyography recordings of TMS motor evoked potentials (MEPs) and cervicomedullary MEPs (CMEPs) were made from the relaxed biceps brachii muscle prior to rhythmic arm cycling and at rest with no intention to move. The amplitude of the MEPs was greater (mean increase: +9.8% of maximal M wave; p = 0.006) and their onset latencies were shorter (mean decrease: –1.5 ms; p < 0.05) prior to cycling when compared with rest. The amplitudes of the CMEPs at any of 3 stimulation intensities were not different between conditions. We conclude that premovement enhancement of corticospinal excitability is greater prior to arm cycling than at rest because of increases in supraspinal but not spinal motoneurone excitability.


2017 ◽  
Vol 118 (6) ◽  
pp. 3242-3251 ◽  
Author(s):  
Brandon Wayne Collins ◽  
Edward W. J. Cadigan ◽  
Lucas Stefanelli ◽  
Duane C. Button

The purpose of this study was to examine the effect of shoulder position on corticospinal excitability (CSE) of the biceps brachii during rest and a 10% maximal voluntary contraction (MVC). Participants ( n = 9) completed two experimental sessions with four conditions: 1) rest, 0° shoulder flexion; 2) 10% MVC, 0° shoulder flexion; 3) rest, 90° shoulder flexion; and 4) 10% MVC, 90° shoulder flexion. Transcranial magnetic, transmastoid electrical, and Erb’s point stimulation were used to induce motor-evoked potentials (MEPs), cervicomedullary MEPs (CMEPs), and maximal muscle compound potentials (Mmax), respectively, in the biceps brachii in each condition. At rest, MEP, CMEP, and Mmax amplitudes increased ( P < 0.01) by 509.7 ± 118.3%, 113.3 ± 28.3%, and 155.1 ± 47.9%, respectively, at 90° compared with 0°. At 10% MVC, MEP amplitudes did not differ ( P = 0.08), but CMEP and Mmax amplitudes increased ( P < 0.05) by 32.3 ± 10.5% and 127.9 ± 26.1%, respectively, at 90° compared with 0°. MEP/Mmax increased ( P < 0.01) by 224.0 ± 99.1% at rest and decreased ( P < 0.05) by 51.3 ± 6.7% at 10% MVC at 90° compared with 0°. CMEP/Mmax was not different ( P = 0.22) at rest but decreased ( P < 0.01) at 10% MVC by 33.6 ± 6.1% at 90° compared with 0°. EMG increased ( P < 0.001) by 8.3 ± 2.0% at rest and decreased ( P < 0.001) by 21.4 ± 4.4% at 10% MVC at 90° compared with 0°. In conclusion, CSE of the biceps brachii was dependent on shoulder position, and the pattern of change was altered within the state in which it was measured. The position-dependent changes in Mmax amplitude, EMG, and CSE itself all contribute to the overall change in CSE of the biceps brachii. NEW & NOTEWORTHY We demonstrate that when the shoulder is placed into two common positions for determining elbow flexor force and activation, corticospinal excitability (CSE) of the biceps brachii is both shoulder position and state dependent. At rest, when the shoulder is flexed from 0° to 90°, supraspinal factors predominantly alter CSE, whereas during a slight contraction, spinal factors predominantly alter CSE. Finally, the normalization techniques frequently used by researchers to investigate CSE may under- and overestimate CSE when shoulder position is changed.


2019 ◽  
Vol 122 (6) ◽  
pp. 2331-2343 ◽  
Author(s):  
Timothy S. Pulverenti ◽  
Md. Anamul Islam ◽  
Ola Alsalman ◽  
Lynda M. Murray ◽  
Noam Y. Harel ◽  
...  

Locomotion requires the continuous integration of descending motor commands and sensory inputs from the legs by spinal central pattern generator circuits. Modulation of spinal neural circuits by transspinal stimulation is well documented, but how transspinal stimulation affects corticospinal excitability during walking in humans remains elusive. We measured the motor evoked potentials (MEPs) at multiple phases of the step cycle conditioned with transspinal stimulation delivered at sub- and suprathreshold intensities of the spinally mediated transspinal evoked potential (TEP). Transspinal stimulation was delivered before or after transcranial magnetic stimulation during which summation between MEP and TEP responses in the surface EMG was absent or present. Relationships between MEP amplitude and background EMG activity, silent period duration, and phase-dependent EMG amplitude modulation during and after stimulation were also determined. Ankle flexor and extensor MEPs were depressed by suprathreshold transspinal stimulation when descending volleys were timed to interact with transspinal stimulation-induced motoneuron depolarization at the spinal cord. MEP depression coincided with decreased MEP gain, unaltered MEP threshold, and unaltered silent period duration. Locomotor EMG activity of bilateral knee and ankle muscles was significantly depressed during the step at which transspinal stimulation was delivered but fully recovered at the subsequent step. The results support a model in which MEP depression by transspinal stimulation occurs via subcortical or spinal mechanisms. Transspinal stimulation disrupts the locomotor output of flexor and extensor motoneurons initially, but the intact nervous system has the ability to rapidly overcome this pronounced locomotor adaptation. In conclusion, transspinal stimulation directly affects spinal locomotor centers in healthy humans. NEW & NOTEWORTHY Lumbar transspinal stimulation decreases ankle flexor and extensor motor evoked potentials (MEPs) during walking. The MEP depression coincides with decreased MEP gain, unaltered MEP threshold changes, and unaltered silent period duration. These findings indicate that MEP depression is subcortical or spinal in origin. Healthy subjects could rapidly overcome the pronounced depression of muscle activity during the step at which transspinal stimulation was delivered. Thus, transspinal stimulation directly affects the function of spinal locomotor networks in healthy humans.


2019 ◽  
Vol 9 (2) ◽  
pp. 41 ◽  
Author(s):  
Evan Lockyer ◽  
Anna Nippard ◽  
Kaitlyn Kean ◽  
Nicole Hollohan ◽  
Duane Button ◽  
...  

Background: The present study compared corticospinal excitability to the biceps brachii muscle during arm cycling at a self-selected and a fixed cadence (SSC and FC, respectively). We hypothesized that corticospinal excitability would not be different between the two conditions. Methods: The SSC was initially performed and the cycling cadence was recorded every 5 s for one minute. The average cadence of the SSC cycling trial was then used as a target for the FC of cycling that the participants were instructed to maintain. The motor evoked potentials (MEPs) elicited via transcranial magnetic stimulation (TMS) of the motor cortex were recorded from the biceps brachii during each trial of SSC and FC arm cycling. Results: Corticospinal excitability, as assessed via normalized MEP amplitudes (MEPs were made relative to a maximal compound muscle action potential), was not different between groups. Conclusions: Focusing on maintaining a fixed cadence during arm cycling does not influence corticospinal excitability, as assessed via TMS-evoked MEPs.


2019 ◽  
Vol 9 (8) ◽  
pp. 205 ◽  
Author(s):  
Evan J. Lockyer ◽  
Katarina Hosel ◽  
Anna P. Nippard ◽  
Duane C. Button ◽  
Kevin E. Power

Background: We examined corticospinal and spinal excitability across multiple power outputs during arm cycling using a weak and strong stimulus intensity. Methods: We elicited motor evoked potentials (MEPs) and cervicomedullary motor evoked potentials (CMEPs) in the biceps brachii using magnetic stimulation over the motor cortex and electrical stimulation of corticospinal axons during arm cycling at six different power outputs (i.e., 25, 50, 100, 150, 200 and 250 W) and two stimulation intensities (i.e., weak vs. strong). Results: In general, biceps brachii MEP and CMEP amplitudes (normalized to maximal M-wave (Mmax)) followed a similar pattern of modulation with increases in cycling intensity at both stimulation strengths. Specifically, MEP and CMEP amplitudes increased up until ~150 W and ~100 W when the weak and strong stimulations were used, respectively. Further increases in cycling intensity revealed no changes on MEP or CMEP amplitudes for either stimulation strength. Conclusions: In general, MEPs and CMEPs changed in a similar manner, suggesting that increases and subsequent plateaus in overall excitability are likely mediated by spinal factors. Interestingly, however, MEP amplitudes were disproportionately larger than CMEP amplitudes as power output increased, despite being initially matched in amplitude, particularly with strong stimulation. This suggests that supraspinal excitability is enhanced to a larger degree than spinal excitability as the power output of arm cycling increases.


Sign in / Sign up

Export Citation Format

Share Document