scholarly journals Gamma oscillations modulate working memory recall precision

Author(s):  
Lyall Thompson ◽  
Janine Khuc ◽  
Maria Silvia Saccani ◽  
Nahid Zokaei ◽  
Marinella Cappelletti

AbstractWorking memory (WM)—the ability to keep information in mind for short periods of time—is linked to attention and inhibitory abilities, i.e., the capacity to ignore task-irrelevant information. These abilities have been associated with brain oscillations, especially parietal gamma and alpha bands, but it is yet unknown whether these oscillations also modulate attention and inhibitory abilities. To test this, we compared parietal gamma-transcranial alternating current stimulation (tACS) to alpha-tACS and to a non-stimulation condition (Sham) in 51 young participants. Stimulation was coupled with a WM task probing memory-based attention and inhibitory abilities by means of probabilistic retrospective cues, including informative (valid), uninformative (invalid) and neutral. Our results show that relative to alpha and sham stimulation, parietal gamma-tACS significantly increased working memory recall precision. Additional post hoc analyses also revealed strong individual variability before and following stimulation; low-baseline performers showed no significant changes in performance following both gamma and alpha-tACS relative to sham. In contrast, in high-baseline performers gamma- (but not alpha) tACS selectively and significantly improved misbinding-feature errors as well as memory precision, particularly in uninformative (invalid) cues which rely more strongly on attentional abilities. We concluded that parietal gamma oscillations, therefore, modulate working memory recall processes, although baseline performance may further influence the effect of stimulation.

2016 ◽  
Vol 28 (11) ◽  
pp. 1737-1748 ◽  
Author(s):  
Philipp Alexander Schroeder ◽  
Roland Pfister ◽  
Wilfried Kunde ◽  
Hans-Christoph Nuerk ◽  
Christian Plewnia

Cognitive conflicts and distractions by task-irrelevant information often counteract effective and goal-directed behaviors. In some cases, conflicting information can even emerge implicitly, without an overt distractor, by the automatic activation of mental representations. For instance, during number processing, magnitude information automatically elicits spatial associations resembling a mental number line. This spatial–numerical association of response codes (SNARC) effect can modulate cognitive-behavioral performance but is also highly flexible and context-dependent, which points toward a critical involvement of working memory functions. Transcranial direct current stimulation to the PFC, in turn, has been effective in modulating working memory-related cognitive performance. In a series of experiments, we here demonstrate that decreasing activity of the left PFC by cathodal transcranial direct current stimulation consistently and specifically eliminates implicit cognitive conflicts based on the SNARC effect, but explicit conflicts based on visuospatial distraction remain unaffected. This dissociation is polarity-specific and appears unrelated to functional magnitude processing as classified by regular numerical distance effects. These data demonstrate a causal involvement of the left PFC in implicit cognitive conflicts based on the automatic activation of spatial–numerical processing. Corroborating the critical interaction of brain stimulation and neurocognitive functions, our findings suggest that distraction from goal-directed behavior by automatic activation of implicit, task-irrelevant information can be blocked by the inhibition of prefrontal activity.


2019 ◽  
Author(s):  
Remington Mallett ◽  
Anurima Mummaneni ◽  
Jarrod Lewis-Peacock

Working memory persists in the face of distraction, yet not without consequence. Previous research has shown that memory for low-level visual features is systematically influenced by the maintenance or presentation of a similar distractor stimulus. Responses are frequently biased in stimulus space towards a perceptual distractor, though this has yet to be determined for high-level stimuli. We investigated whether these influences are shared for complex visual stimuli such as faces. To quantify response accuracies for these stimuli, we used a delayed-estimation task with a computer-generated “face space” consisting of eighty faces that varied continuously as a function of age and sex. In a set of three experiments, we found that responses for a target face held in working memory were biased towards a distractor face presented during the maintenance period. The amount of response bias did not vary as a function of distance between target and distractor. Our data suggest that, similar to low-level visual features, high-level face representations in working memory are biased by the processing of related but task-irrelevant information.


2021 ◽  
Author(s):  
John P Grogan ◽  
Govind Randhawa ◽  
Minho Kim ◽  
Sanjay G Manohar

Motivation can improve performance when the potential rewards outweigh the cost of effort expended. In working memory (WM), people can prioritise rewarded items at the expense of unrewarded items, suggesting a fixed memory capacity. But can capacity itself increase with motivation? Across four experiments (N = 30-34) we demonstrate motivational improvements in WM even when all items were rewarded. However, this was not due to better memory precision, but rather better selection of the probed item within memory. Motivational improvements operated independently of encoding, maintenance, or attention shifts between items in memory. Moreover, motivation slowed responses. This contrasted with the benefits of rewarding items unequally, which allowed prioritisation of one item over another. We conclude that motivation can improve memory recall, not via precision or capacity, but via speed-accuracy trade-offs when selecting the item to retrieve.


2012 ◽  
Vol 19 (2) ◽  
pp. 218-224 ◽  
Author(s):  
Jun Yin ◽  
Jifan Zhou ◽  
Haokui Xu ◽  
Junying Liang ◽  
Zaifeng Gao ◽  
...  

2019 ◽  
Author(s):  
Ashley DiPuma ◽  
Kelly Rivera ◽  
Edward Ester

Working memory (WM) performance can be improved by an informative cue presented during storage. This effect, termed a retro-cue benefit, can be used to explore mechanisms of attentional prioritization in WM. Directing attention to a single item stored in memory is known to increase memory precision while decreasing the likelihood of incorrect item reports and random guesses, but it is unclear whether similar benefits manifest when participants direct attention to multiple items stored in memory. We tested this possibility by quantifying memory performance when participants were cued to prioritize one or two items stored in working memory. Consistent with prior work, cueing participants to prioritize a single memory item yielded higher recall precision, fewer swap errors, and fewer guesses relative to a neutral cue condition. Conversely, cueing participants to prioritize two memory items yielded fewer swap errors relative to a neutral condition, but no differences in recall precision or guess rates. Although swap rates were less likely during the cue-two vs. neutral conditions, planned comparisons revealed that when participants made swap errors during cue-two trials they were far more likely to confuse two prioritized stimuli than they were to confuse a prioritized stimulus vs. a non-prioritized stimulus. Our results suggest that it is possible to prioritize multiple items stored in memory, with the caveat that doing so may increase the probability of confusing prioritized items.


Author(s):  
Raquel Muñoz-Pradas ◽  
Irene Íñigo-Ruíz ◽  
Elena I. Rodriguez-Martínez ◽  
Carlos M. Gómez

2021 ◽  
Author(s):  
Jiali Liu ◽  
Tao Yu ◽  
Jinfeng Wu ◽  
Yali Pan ◽  
Zheng Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document