Predator–prey behavioural interactions between the asterinid seastars Meridiastra calcar and Parvulastra exigua sympatric on the rocky shores of southeast Australia

2021 ◽  
Vol 168 (8) ◽  
Author(s):  
Emily J. McLaren ◽  
Maria Byrne
1960 ◽  
Vol 11 (2) ◽  
pp. 182 ◽  
Author(s):  
I Bennett ◽  
EC Pope

The environmental factors and the zonation of the plants and animals on the exposed rocky coasts of Tasmania are described, and the findings of the present survey are compared with those of other workers both in Tasmania and in southeast Australia generally. A distinct biota, traces of which were first noticed in Victoria by the present authors (1963), is evident on Tasmanian shores, and the validity of the authors' cool temperate Maugean Province is reaffirmed. This paper concludes the series of ecological studies (Dakin, Bennett, and Pope 1948; Bennett and Pope 1953) on the intertidal zone of south-eastern Australia.


2021 ◽  
Vol 75 (2) ◽  
Author(s):  
Mariana Rossa ◽  
Sandro Lovari ◽  
Francesco Ferretti

Abstract Spatial and temporal occurrence can mediate behavioural interactions between apex predators, mesocarnivores and herbivores. Predators should adapt their activity to that of prey, whereas predator avoidance would be expected to influence activity patterns and space use of prey and smaller competitors. We evaluated interspecific spatiotemporal relationships in a prey-rich community including an apex predator (the wolf), three wild ungulates and several smaller herbivores/mesocarnivores, through camera trapping. All considered species (i.e. wolves and potential prey/smaller competitors: wild boar, fallow deer, roe deer, crested porcupine, red fox and European badger) were active especially at night and/or twilight. Among wild ungulates, the wolf showed the greatest temporal overlap with the wild boar and the lowest one with the least abundant and used of them, i.e. the roe deer. The main prey (i.e. the fallow deer) showed more diurnal activity and a lower temporal overlap with the predator in sites with high wolf activity than in low-activity ones. Among mesocarnivores, the red fox showed extensive temporal overlap with the wolf: the overlap between the two canids was greater in sites intensively used by this apex predator than in sites with low wolf activity, supporting a concurrent study which suggested a potential for facilitative—rather than competitive—interactions. Spatiotemporal relationships suggest complex interactions between the apex predator, prey and smaller carnivores, for which a substantial temporal or spatial association was often supported. Significance statement There is a growing interest in the influence of apex predators on ecosystems through their effects on the behaviour of prey and smaller carnivores, especially in the light of the ongoing recovery of large carnivores in temperate areas. Predators should synchronise their activity to that of prey; conversely, prey and smaller carnivores would be expected to avoid predators. In a rich community including the wolf, three wild ungulates and several mesomammals, we detected (i) a substantial temporal overlap between wolves and wild boar, porcupines and mesocarnivores; (ii) a negative temporal association between the predator and its main prey (i.e. the fallow deer) and (iii) a great temporal overlap between the wolf and the red fox. We provide a baseline to evaluate temporal changes of predator-prey-mesocarnivore behavioural interactions along with variations of carnivore-prey densities.


1997 ◽  
Author(s):  
Alan B. Bond ◽  
Alan C. Kamil ◽  
Christopher Cink
Keyword(s):  

2020 ◽  
Vol 646 ◽  
pp. 79-92
Author(s):  
RE Scheibling ◽  
R Black

Population dynamics and life history traits of the ‘giant’ limpet Scutellastra laticostata on intertidal limestone platforms at Rottnest Island, Western Australia, were recorded by interannual (January/February) monitoring of limpet density and size structure, and relocation of marked individuals, at 3 locations over periods of 13-16 yr between 1993 and 2020. Limpet densities ranged from 4 to 9 ind. m-2 on wave-swept seaward margins of platforms at 2 locations and on a rocky notch at the landward margin of the platform at a third. Juvenile recruits (25-55 mm shell length) were present each year, usually at low densities (<1 m-2), but localized pulses of recruitment occurred in some years. Annual survival rates of marked limpets varied among sites and cohorts, ranging from 0.42 yr-1 at the notch to 0.79 and 0.87 yr-1 on the platforms. A mass mortality of limpets on the platforms occurred in 2003, likely mediated by thermal stress during daytime low tides, coincident with high air temperatures and calm seas. Juveniles grew rapidly to adult size within 2 yr. Asymptotic size (L∞, von Bertalanffy growth model) ranged from 89 to 97 mm, and maximum size from 100 to 113 mm, on platforms. Growth rate and maximum size were lower on the notch. Our empirical observations and simulation models suggest that these populations are relatively stable on a decadal time scale. The frequency and magnitude of recruitment pulses and high rate of adult survival provide considerable inertia, enabling persistence of these populations in the face of sporadic climatic extremes.


Sign in / Sign up

Export Citation Format

Share Document