Fluid flow and heat transfer in transitional boundary layers: effects of surface curvature and free stream velocity

2006 ◽  
Vol 43 (1) ◽  
pp. 7-15 ◽  
Author(s):  
H. Umur ◽  
A. A. Ozalp
1989 ◽  
Vol 111 (1) ◽  
pp. 71-77 ◽  
Author(s):  
P. M. Ligrani ◽  
A. Ortiz ◽  
S. L. Joseph ◽  
D. L. Evans

Heat transfer effects of longitudinal vortices embedded within film-cooled turbulent boundary layers on a flat plate were examined for free-stream velocities of 10 m/s and 15 m/s. A single row of film-cooling holes was employed with blowing ratios ranging from 0.47 to 0.98. Moderate-strength vortices were used with circulating-to-free stream velocity ratios of −0.95 to −1.10 cm. Spatially resolved heat transfer measurements from a constant heat flux surface show that film coolant is greatly disturbed and that local Stanton numbers are altered significantly by embedded longitudinal vortices. Near the downwash side of the vortex, heat transfer is augmented, vortex effects dominate flow behavior, and the protection from film cooling is minimized. Near the upwash side of the vortex, coolant is pushed to the side of the vortex, locally increasing the protection provided by film cooling. In addition, local heat transfer distributions change significantly as the spanwise location of the vortex is changed relative to film-cooling hole locations.


1966 ◽  
Vol 88 (3) ◽  
pp. 249-256 ◽  
Author(s):  
L. H. Back ◽  
A. B. Witte

Laminar boundary-layer heat transfer and shear-stress predictions from existing similarity solutions are extended in an approximate way to perfect gas flows with a large free-stream velocity gradient parameter β and variable density-viscosity product ρμ across the boundary layer resulting from a highly cooled wall. The dimensionless enthalpy gradient at the wall gw′, to which the heat flux is related, is found not to vary appreciably with β. Thus the application of similarity solutions on a local basis to predict heat transfer from accelerated flows to an arbitrary surface may be a reasonable approximation involving a minimum amount of calculation time. Unlike gw′, the dimensionless velocity gradient at the wall fw″, to which the shear stress is related, is strongly dependent on β.


1967 ◽  
Vol 29 (4) ◽  
pp. 625-645 ◽  
Author(s):  
P. Bradshaw

Measurements in three boundary layers, one with constant free-stream velocity and two with power-law variations of free-stream velocity giving ‘moderate’ and ‘strong’ adverse pressure gradients, are presented and discussed. Several unifying features of the turbulent motion, expected to appear in all boundary layers not too far from equilibrium, are identified. The intensity spectra at higher wavenumbers follow the Kolmogorov inertial-subrange law, although the Reynolds number is not particularly high even by laboratory standards: in addition the smaller-scale motion in the outer layer is determined entirely by the local shear stress and the boundary-layer thickness. The large eddy motion increases in strength relative to the general turbulence level as the general turbulence level increases, and the limited evidence available suggests that the large eddies are similar to those in the free mixing layer. In all cases the large eddies contribute a significant proportion of the shear stress in the outer layer.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Tapas Ray Mahapatra ◽  
Sabyasachi Mondal ◽  
Dulal Pal

An analysis is made on the study of two-dimensional MHD (magnetohydrodynamic) boundary-layer stagnation-point flow of an electrically conducting power-law fluid over a stretching surface when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point in the presence of thermal radiation and suction/injection. The paper examines heat transfer in the stagnation-point flow of a power-law fluid except when the ratio of the free stream velocity and stretching velocity is equal to unity. The governing partial differential equations along with the boundary conditions are first brought into a dimensionless form and then the equations are solved by Runge-Kutta fourth-order scheme with shooting techniques. It is found that the temperature at a point decreases/increases with increase in the magnetic field when free stream velocity is greater/less than the stretching velocity. It is further observed that for a given value of the magnetic parameter M, the dimensionless rate of heat transfer at the surface and |θ′(0)| decreases/increases with increase in the power-law index n. Further, the temperature at a point in the fluid decreases with increase in the radiation parameter NR when free stream velocity is greater/less than the stretching velocity.


Sign in / Sign up

Export Citation Format

Share Document