Predicting the engine trade-off study and performance characteristics using different blends of methyl Ester fish oil and higher alcohol with aid of artificial neural network based multi objective optimization

Author(s):  
S. K. Gugulothu ◽  
J. Ramachander ◽  
A. Kiran Kumar
Author(s):  
Saurabh Kumar Gupta ◽  
KN Pandey ◽  
Rajneesh Kumar

The present research investigates the application of artificial intelligence tool for modelling and multi-objective optimization of friction stir welding parameters of dissimilar AA5083-O–AA6063-T6 aluminium alloys. The experiments have been conducted according to a well-designed L27 orthogonal array. The experimental results obtained from L27 experiments were used for developing artificial neural network-based mathematical models for tensile strength, microhardness and grain size. A hybrid approach consisting of artificial neural network and genetic algorithm has been used for multi-objective optimization. The developed artificial neural network-based models for tensile strength, microhardness and grain size have been found adequate and reliable with average percentage prediction errors of 0.053714, 0.182092 and 0.006283%, respectively. The confirmation results at optimum parameters showed considerable improvement in the performance of each response.


Sign in / Sign up

Export Citation Format

Share Document