Investigation of the Role of Hydrophobic Amino Acids on the Structure–Activity Relationship in the Antimicrobial Venom Peptide Ponericin L1

Author(s):  
Nicholas P. Schifano ◽  
Gregory A. Caputo
2020 ◽  
Vol 10 (2) ◽  
pp. 168-176
Author(s):  
Krishnasamy Gopinath ◽  
Nagarajan Subbiah ◽  
Muthusamy Karthikeyan

Background: Syzygium densiflorum Wall. ex Wight & Arn (Myrtaceae) has been traditionally used by the local tribes of the Nilgiris, Tamil Nadu, India, for the treatment of diabetes. Objective: This study aimed to isolate the major phytoconstituents from the S. densiflorum fruits and to perform computational studies for chemical reactivity and biological activity of the isolated compound. Materials and Methods: Two different compounds were isolated from ethanolic extract of S. densiflorum fruits and purified using HPLC. The structures of the compounds were elucidated on the basis of their 1H NMR, 13C NMR, 1H-1H COSY, HMBC, HRESIMS, and FT-IR data. Further, the chemical reactivity of the compounds was analyzed by density functional theory calculations and its therapeutic role in diabetic management was examined by comparing the structure of isolated compounds with previously reported bioactive compounds. Results: Of the two compounds ((6,6 & 1-kestopentaose (1) and 6-(hydroxymethyl)-3-[3,4,5- trihydroxy- 6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]oxan-2-yl]oxyoxane-2,4,5-triol)(2)). β-glucosidase, β-galactosidase, α-glucosidase and β-amylase inhibition activity of the compounds were predicted by structure activity relationship. Conclusion: Structure-activity relationship analysis was performed to predict the therapeutic role of isolated compounds. These computational studies may be performed to minimize the efforts to determine the therapeutic role of natural compounds.


2020 ◽  
Vol 13 (2) ◽  
pp. 20
Author(s):  
Quentin Spillier ◽  
Séverine Ravez ◽  
Judith Unterlass ◽  
Cyril Corbet ◽  
Charline Degavre ◽  
...  

For many years now, targeting deregulation within cancer cells’ metabolism has appeared as a promising strategy for the development of more specific and efficient cancer treatments. Recently, numerous reports highlighted the crucial role of the serine synthetic pathway, and particularly of the phosphoglycerate dehydrogenase (PHGDH), the first enzyme of the pathway, to sustain cancer progression. Yet, because of very weak potencies usually in cell-based settings, the inhibitors reported so far failed to lay ground on the potential of this approach. In this paper, we report a structure–activity relationship study of a series of α-ketothioamides that we have recently identified. Interestingly, this study led to a deeper understanding of the structure–activity relationship (SAR) in this series and to the identification of new PHGDH inhibitors. The activity of the more potent compounds was confirmed by cellular thermal shift assays and in cell-based experiments. We hope that this research will eventually provide a new entry point, based on this promising chemical scaffold, for the development of therapeutic agents targeting PHGDH.


Sign in / Sign up

Export Citation Format

Share Document