scholarly journals Wellposedness and Decay Rates for the Cauchy Problem of the Moore–Gibson–Thompson Equation Arising in High Intensity Ultrasound

2017 ◽  
Vol 80 (2) ◽  
pp. 447-478 ◽  
Author(s):  
M. Pellicer ◽  
B. Said-Houari
2013 ◽  
Vol 10 (04) ◽  
pp. 677-701
Author(s):  
CARLOS ALMADA

We derive L∞–L1 decay rate estimates for solutions of the shifted wave equation on certain symmetric spaces (M, g). The Cauchy problem for the shifted wave operator on these spaces was studied by Helgason, who obtained a closed form for its solution. Our results extend to this new context the classical estimates for the wave equation in ℝn. Then, following an idea from Klainerman, we introduce a new norm based on Lie derivatives with respect to Killing fields on M and we derive an estimate for the case that n = dim M is odd.


Author(s):  
Reinhard Racke ◽  
Belkacem Said-Houari

We consider the Cauchy problem of a third order in time nonlinear equation known as the Jordan–Moore–Gibson–Thompson (JMGT) equation arising in acoustics as an alternative model to the well-known Kuznetsov equation. We show a local existence result in appropriate function spaces, and, using the energy method together with a bootstrap argument, we prove a global existence result for small data, without using the linear decay. Finally, polynomial decay rates in time for a norm related to the solution will be obtained.


2015 ◽  
Vol 48 (3) ◽  
Author(s):  
Belkacem Said-Houari

AbstractIn this paper, we study the asymptotic behavior of the solutions of the one-dimensional Cauchy problem in Timoshenko system with thermal effect. The heat conduction is given by the type III theory of Green and Naghdi. We prove that the dissipation induced by the heat conduction alone is strong enough to stabilize the system, but with slow decay rate. To show our result, we transform our system into a first order system and, applying the energy method in the Fourier space, we establish some pointwise estimates of the Fourier image of the solution. Using those pointwise estimates, we prove the decay estimates of the solution and show that those decay estimates are very slow and, in the case of nonequal wave speeds, are of regularity-loss type. This paper solves the open problem stated in [10] and shows that the stability of the solution holds without any additional mechanical damping term.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ruy Coimbra Charão ◽  
Alessandra Piske ◽  
Ryo Ikehata

<p style='text-indent:20px;'>We introduce a new model of the logarithmic type of wave like plate equation with a nonlocal logarithmic damping mechanism. We consider the Cauchy problem for this new model in <inline-formula><tex-math id="M1">\begin{document}$ {{\bf R}}^{n} $\end{document}</tex-math></inline-formula>, and study the asymptotic profile and optimal decay rates of solutions as <inline-formula><tex-math id="M2">\begin{document}$ t \to \infty $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M3">\begin{document}$ L^{2} $\end{document}</tex-math></inline-formula>-sense. The operator <inline-formula><tex-math id="M4">\begin{document}$ L $\end{document}</tex-math></inline-formula> considered in this paper was first introduced to dissipate the solutions of the wave equation in the paper studied by Charão-Ikehata [<xref ref-type="bibr" rid="b7">7</xref>]. We will discuss the asymptotic property of the solution as time goes to infinity to our Cauchy problem, and in particular, we classify the property of the solutions into three parts from the viewpoint of regularity of the initial data, that is, diffusion-like, wave-like, and both of them.</p>


Author(s):  
José Bonet ◽  
Wolfgang Lusky ◽  
Jari Taskinen

We consider the Cauchy problem for a general class of parabolic partial differential equations in the Euclidean space ℝ N . We show that given a weighted L p -space $L_w^p({\mathbb {R}}^N)$ with 1 ⩽ p < ∞ and a fast growing weight w, there is a Schauder basis $(e_n)_{n=1}^\infty$ in $L_w^p({\mathbb {R}}^N)$ with the following property: given an arbitrary positive integer m there exists n m  > 0 such that, if the initial data f belongs to the closed linear span of e n with n ⩾ n m , then the decay rate of the solution of the problem is at least t−m for large times t. The result generalizes the recent study of the authors concerning the classical linear heat equation. We present variants of the result having different methods of proofs and also consider finite polynomial decay rates instead of unlimited m.


2005 ◽  
Vol 2005 (7) ◽  
pp. 757-766 ◽  
Author(s):  
Francisco Guillén González ◽  
Márcio Santos da Rocha ◽  
Marko Rojas Medar

The Boussinesq equations describe the motion of an incompressible viscous fluid subject to convective heat transfer. Decay rates of derivatives of solutions of the three-dimension-al Cauchy problem for a Boussinesq system are studied in this work.


2003 ◽  
Vol 8 (1) ◽  
pp. 61-75
Author(s):  
V. Litovchenko

The well-posedness of the Cauchy problem, mentioned in title, is studied. The main result means that the solution of this problem is usual C∞ - function on the space argument, if the initial function is a real functional on the conjugate space to the space, containing the fundamental solution of the corresponding problem. The basic tool for the proof is the functional analysis technique.


Sign in / Sign up

Export Citation Format

Share Document