Microbial Community Structure and Density Under Different Tree Species in an Acid Forest Soil (Morvan, France)

2005 ◽  
Vol 50 (4) ◽  
pp. 614-625 ◽  
Author(s):  
David P. H. Lejon ◽  
Rémi Chaussod ◽  
Jacques Ranger ◽  
Lionel Ranjard
Forests ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 435 ◽  
Author(s):  
Jiacong Zhou ◽  
Xiaofei Liu ◽  
Jinsheng Xie ◽  
Maokui Lyu ◽  
Yong Zheng ◽  
...  

Forest soil respiration plays an important role in global carbon (C) cycling. Owing to the high degree of C and nitrogen (N) cycle coupling, N deposition rates may greatly influence forest soil respiration, and possibly even global C cycling. Soil microbes play a crucial role in regulating the biosphere–atmosphere C exchange; however, how microbes respond to N addition remains uncertain. To better understand this process, the experiment was performed in the Castanopsis kawakamii Hayata Nature Reserve, in the subtropical zone of China. Treatments involved applying different levels of N (0, 40, and 80 kg ha−2 year−1) over a three-year period (January 2013–December 2015) to explore how soil physicochemical properties, respiration rate, phospholipid fatty acid (PLFA) concentration, and solid state 13C nuclear magnetic resonance responded to various N addition rate. Results showed that high levels of N addition significantly decreased soil respiration; however, low levels of N addition significantly increased soil respiration. High levels of N reduced soil pH and enhanced P and C co-limitation of microorganisms, leading to significant reductions in total PLFA and changes in the structure of microbial communities. Significant linear relationships were observed between annual cumulative respiration and the concentration of microbial biomass (total PLFA, gram-positive bacteria (G+), gram-negative bacteria (G−), total bacteria, and fungi) and the microbial community structure (G+: G− ratio). Taken together, increasing N deposition changed microbial community structure and suppressed microbial biomass, ultimately leading to recalcitrant C accumulation and soil C emissions decrease in subtropical forest.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1018
Author(s):  
Yang Gao ◽  
Xiuwei Wang ◽  
Zijun Mao ◽  
Liu Yang ◽  
Zhiyan Jiang ◽  
...  

The soil microbial community structure is critical to the cycling of carbon and nitrogen in forest soils. As afforestation practices increasingly promote different functional traits of tree species, it has become critical to understand how they influence soil microbial community structures, which directly influence soil biogeochemical processes. We used fungi ITS and bacteria 16S rDNA to investigate soil microbial community structures in three monoculture plantations consisting of a non-native evergreen conifer (Pinus sibirica), a native deciduous conifer (Larix gmelinii), and a native deciduous angiosperm (Betula platyphylla) and compared them with two 1:1 mixed-species plantations (P. sibirica and L. gmelinii, P. sibirica and B. platyphylla). The fungal community structure of the conifer–angiosperm mixed plantation was similar to that of the non-native evergreen conifer, and the bacterial community structure was similar to that of the angiosperm monoculture plantation. Fungal communities were strongly related to tree species, but bacterial communities were strongly related to soil nitrogen. The co-occurrence networks were more robust in the mixed plantations, and the microbial structures associated with soil carbon and nitrogen were significantly increased. Our results provide a comparative study of the soil microbial ecology in response to afforestation of species with different functional traits and enhance the understanding of factors controlling the soil microbial community structure.


2016 ◽  
Author(s):  
Manuel Aira ◽  
Andrea Tato ◽  
Jorge Domínguez

Bracken fern (Pteridium aquilinum) is one of the most successful plant colonizers of soils in temperate regions; however, its effects on microbial community structure and activity and nutrient dynamics remain poorly understood. We studied whether colonization of forest soil by bracken fern modifies the structure and function of the soil microbial communities and considered the implications for ecosystem functioning. For this purpose, we analyzed microbial community structure (PLFAs) and activity (basal respiration, metabolic quotient), litter decomposition and nutrient dynamics (C, N and P) in monospecific oak (Quercus robur L.), eucalyptus (Eucalyptus globulus Labill.) and maritime pine forests (Pinus pinaster Aiton) colonized by bracken fern. Colonization of forest soil by bracken fern led to a reduction in differences in microbial community structure, as revealed by principal component and cluster analysis, although samples from oak forests were grouped separately. According to this, bracken litter decomposed to a greater extent than native tree litter in pine forest soils, whereas the opposite was found in oak forest soils. Such differences were not observed in eucalyptus forest soils. Colonization by bracken fern affected C mineralization, with no difference between the different types of forest; however, both N and P mineralization were higher in oak than in the other types of forest. In conclusion, colonization by bracken fern homogenizes soil microbial community structure. Differences in the decomposability of bracken litter in the different forest systems suggest a high degree of metabolic specialization of soil microorganisms. Thus, the soil microorganisms associated with bracken are continuously driven to decompose the bracken litter. In the long-term this will alter nutrient cycling, slowing decomposition and enhancing sequestering of nutrients by bracken ferns.


2007 ◽  
Vol 39 (5) ◽  
pp. 1111-1120 ◽  
Author(s):  
Aida E. Jiménez Esquilín ◽  
Mary E. Stromberger ◽  
William J. Massman ◽  
John M. Frank ◽  
Wayne D. Shepperd

2008 ◽  
Vol 27 (2) ◽  
pp. 133-138
Author(s):  
Ju-Hwan Oh ◽  
Seul-Bi Lee ◽  
Sung-Eun Park ◽  
Yong-Bok Lee ◽  
Pil-Joo Kim

Sign in / Sign up

Export Citation Format

Share Document